MENTAL HEALTH SEMINAR

14.10.2023
08:30-14:00

Venue:
The Country Club
Johannesburg, Woodmead

Theme:
“Mental Health is every employee’s human right”

RSVP:
Dorothy Phahla
Dorothy@sabcoha.co.za
Contents

Editorial 121

Letter to the Editor 122

The SASOM Annual Author Prize 123

News
- Q(h)ubeka Trust announces final results and lessons learned as it closes 124
- Tshiamiso Trust Reviewing Authorities commence with their dispute resolution function 125

Original Research
- Comparison of illuminance meters in measuring light emitted from incandescent, compact fluorescent, and LED lamps
 - CI Holleran, CJ van der Merwe, JL du Plessis 126

Wind-driven roof turbines' effectiveness in enhancing household ventilation: a potential tool to reduce tuberculosis infection
 - E Mutava, T Singh, D Brouwer 132

Short Report
- Secondary trauma amongst administrative support staff working with traumatic incident dockets within the South African Police Service in Johannesburg, South Africa
 - MF Manganyi, SV Moodley, J Shirinde 137

Issues in Occupational Health
- Occupational malaria: lessons for occupational health practitioners
 - M Ross, J Frean 141

Reports
- Health effects of silica dust exposure – what do we need to do?
 - SASUF Workshop 144

- Integrated environmental, corporate, and business risk management approaches in regional and national developmental projects
 - AUDA-NEPAD 156

Sponsored Article
- Workplace rehabilitation makes sense for both employee and employer
 - RMA 158

Occupational Health Legislation
- No more skirting around the health and safety concerns of women in mining wearing PPE designed for men
 - Webber Wentzel 160

Society Newsletters
- SASOM 161
- SAIoH 165
- MMPA 168
There are at least two things worth celebrating in August in South Africa. Temperatures rise during this last month of winter in South Africa, and we celebrate National Women's Month. The 9th of August is National Women's Day – a day when we commemorate the fight for women, by women, for equality. On this day in 1956, 20 000 women of all races marched to the Union Buildings in Pretoria to protest the pass laws that controlled where non-white people could work, live, and travel.1 During Women's Month, issues that affect women, such as gender-based violence, sexual harassment in the workplace, and unequal pay are brought to the fore and discussed, and solutions are sought. This year's theme, *Accelerating Socio-Economic Opportunities for Women's Empowerment*, focuses on the creation of more employment opportunities for women.1

Women's participation in the economy has increased, but there is still a gap in the labour force participation rate for women (54.3%) compared with that for men (64.9%).2 As efforts to narrow this gap continue and more women enter the workplace, their wellbeing and health in relation to the workplace must be prioritised.

Women differ from men not just biologically, but also with respect to occupations, treatment in workplaces, and their social contexts and roles. These factors influence the occupational risks that women encounter. Women are more likely to work in low-paying jobs and in vulnerable conditions, which include self-employment and unpaid household work.2 Due to their various roles in the society, women can work up to three shifts in a day: as homemakers, cleaning and cooking; as workers, employed or self-employed; and as caregivers, nursing sick family members.3 Much of this work is often unrecognised or invisible because it falls outside occupational regulations and legislation. As a result, despite the significant contributions of women to society and the economy, there is little occupational disease data available and the burden borne by women is underestimated because diseases are not diagnosed, reported, or compensated.

Due to the historic exclusion of women in many employment sectors, occupational standards and policies have been based on scientific evidence drawn from studies on men, and might not adequately protect the health of women. The occupational health and safety laws in many countries do not consider risks that are specific to women, and there is a growing consensus that the “one-size-fits-all” approach to regulation might put women's health at risk. Recognition of the differences between women and men in the workplace is crucial for the protection of the health of all workers.

In a recent book chapter, Hiroaki Matsuura explains the concept of gender mainstreaming in occupational health and safety.4 The International Labour Organization (ILO) defines gender mainstreaming as “the process of assessing the implications for women and men of any planned action, including legislation, policies or programmes, in any area and at all levels. It is a strategy for making the concerns and experiences of women as well as of men an integral part of the design, implementation, monitoring and evaluation of policies and programmes in all political, economic and societal spheres, so that women and men benefit equally, and inequality is not perpetuated.”5 The goal, therefore, is to promote occupational health for all by implementing appropriate gender-specific interventions that target women exclusively, both men and women, or only men, as required.6 This means that all stakeholders, including policymakers and researchers, should consider the influence of sex-related differences in their work.

The reporting of data on women in research is an important methodological issue. In some studies, due to the small numbers of women, findings are not reported by sex or women are excluded. This practice is not unusual in male-dominated occupational settings.6 As researchers, we need to be intentional and ensure that data on women are reported, even if the numbers are small and cannot be analysed as a separate group. Reporting will contribute to knowledge on occupational exposures and diseases in women.

In this issue of the Journal, there are four papers on topics that affect both men and women – in and outside the workplace. Following the COVID-19 lockdowns, there has been an upsurge in travel globally. This has been coined as ‘revenge travel’, characterised by more frequent travel and longer stays,7 which increases the risk of diseases in travellers, including malaria. Ross and Frean discuss another dimension of malaria – occupational malaria – that affects, amongst others, workers in crop farms, fisheries, border control, military, healthcare, boats, and research. Malaria contracted while at work is not officially recognised as an occupational disease because it is difficult to distinguish between occupational and non-occupational malaria. The authors highlight that medical practitioners should be able to recognise and diagnose malaria and encourage workers to take prophylaxis, as required.

The Department of Health has implemented an outpatient, decentralised care model for tuberculosis management. To test if ventilation in the homes of confined patients with tuberculosis could be improved, Mutava et al. investigated the effectiveness of an innovative intervention, using wind-driven turbines. The intervention shows promise as the turbines improved ventilation, which may significantly reduce the risk of tuberculosis infection of household members.

In these times of intermittent electricity supply and rising costs, the provision of adequate lighting for workers is a challenge faced by many businesses. Holleran and others remind readers that lighting contributes to healthy and safe work environments. Compliance with regulations and standards is measured using illuminance meters, but different types of meters measure light differently. The authors compared the performance of three illuminance meters and found differences in specifications and types of illuminance measures that must be considered when developing standards.

Manganyi and co-authors interviewed administrative support staff in the police service to explore the effects of secondary trauma experienced due to viewing incident dockets of traumatic events. They found that although staff members experienced secondary trauma, they were reluctant to utilise employee health and wellness services. The authors propose recommendations to assist traumatised administrative support staff.

On behalf of the *Occupational Health Southern Africa* Editorial Board, I thank the South African Society of Occupational Health Nursing Practitioners (SASOHN) for their involvement in the Journal since its inception 30 years ago. It has been a rewarding partnership and journey. We look forward to future collaborations with the Society and encourage SASOHN members to continue to submit papers for publication.

Finally, as we enter the last quarter of the year and begin the mad rush to meet annual work targets and personal resolutions for 2023, let us not forget to be kind to ourselves and take care of our physical and mental wellbeing.
LETTER TO THE EDITOR

In response to the Letter to the Editor published in the previous issue of Occupational Health Southern Africa (Vol. 29 No. 2 of 2023), SAIOH received requests from members to provide more information regarding the decision about recognition of the Wits School of Public Health MSc Med in Exposure Science (ES) programme.

SAIOH included reference to “recognised programmes” in its criteria for members to apply for upgrading of their certification levels. If a candidate did not complete a SAIOH-recognised programme, s/he needs to complete the International Certificate in Occupational Hygiene (ICertOH) offered by the Occupational Hygiene Training Association (OHTA), in addition to the academic programme. By recognising a programme, SAIOH declares that, to its knowledge, it covers at least the content covered in the OHTA modules, and sufficient information regarding the 17 skill sets included in the SAIOH self-assessment tool, i.e. the referred to 50% occupational hygiene content. This was, amongst other reasons, an attempt to improve the assessment pass rate, by ensuring that members applying for upgrades have completed an academic programme that covered all topics that may be addressed in assessments, thereby improving knowledge and competency in the occupational hygiene field.

The minimum qualification requirement to apply for upgrade to the Registered Occupational Hygiene Technologist (ROHT) level is a recognised NQF Level 7 qualification. The minimum qualification requirement to apply for upgrade to the Registered Occupational Hygienist (ROH) level is a B Tech Environmental Health degree at NQF Level 7, or a recognised NQF Level 8 qualification, provided that the aforementioned qualifications meet the SAIOH occupational hygiene content requirements.

The Wits MSc ES programme is offered at NQF Level 9, with entry requirements into the programme being a relevant four-year B-degree, e.g. BSc Hons or B Tech. This may include the fields of occupational hygiene, occupational health, engineering and environmental health, or other relevant areas.

The course content of the Wits ES programme does cover the health effects and possible control approaches for most occupational health hazards. However, as stated in the application for recognition to SAIOH, the ES programme “... does not go into the technical details of a measurement method, since our approach is that these kinds of technical skills should be learned in practice, or at an undergraduate level.” Therefore, if a candidate completed a qualification that did not address occupational hygiene measurements before enrolling in the ES programme, his/her knowledge thereof may be lacking. Occupational hygiene certification assessments administered by SAIOH focus extensively on the technical details of measurement, as well as “compliance testing” as referred to by the author of the previous Letter, which is a regulated requirement within the occupational environment in South Africa.

It is important to note that recognition by SAIOH does not constitute endorsement of a programme in general, but merely recognises programmes already identified and offered by tertiary institutions as occupational hygiene degrees, or degrees with an occupational hygiene content of 50% or more.

The author referred to the Exposure Science-Industrial Hygiene programme offered by the University of Michigan. On the University’s website, the mission of the programme is described as follows: “Studying Exposure Science-Industrial Hygiene at U-M: The mission of the Industrial Hygiene program is to provide outstanding comprehensive graduate-level education in occupational health science; ensuring that graduates (sic) are qualified to pursue careers and assume leadership roles in the modern practice of industrial hygiene.”

The aim of the programme offered by Wits is described on their website as follows: “This degree is targeted at potential academics, specialists or professionals in the field of occupational hygiene, environmental health, environmental sciences, chemistry, toxicology, physiology etc., with a scientific interest to bridge these fields.”

The SAIOH Occupational Hygiene Skills Forum (OHSF) recognises the Wits MSc ES programme as an excellent post-certification degree for SAIOH members wishing to study towards an NQF Level 9 qualification, to broaden their understanding of a holistic approach to exposure, and control thereof, within and beyond the occupational environment. In our opinion, this aligns well with the purpose of the programme as stated on the Wits website, and as mentioned by the author.

Candidates who completed the Wits MSc ES programme after obtaining a B Tech Environmental Health degree at NQF Level 7, or a recognised four-year B-degree at NQF Level 8 in the field of occupational hygiene, will be recognised as suitably qualified to apply for ROHT or ROH upgrade.

Candidates who did not obtain a recognised occupational hygiene qualification at NQF Level 7 or 8 prior to enrolling for the Wits MSc ES programme and wish to obtain SAIOH certification, will have to complete the following OHTA modules, in addition, before applying for certification at ROHT or ROH level:

- W201: Basic Principles in Occupational Hygiene – strongly recommended if not familiar with basic occupational hygiene concepts
- W501: Measurement of Hazardous Chemicals – required
- W503: Noise – required

The above applies to the qualification requirement for certification.

Candidates wishing to apply for SAIOH certification also need to prove practical experience relevant to the respective certification levels, as specified on the SAIOH website.

Any further information on the matter can be obtained from SAIOH on request.
On behalf of *Occupational Health Southern Africa*, the South African Society of Occupational Medicine (SASOM) encourages researchers working in the field of occupational health in Africa to publish their research findings. SASOM provides a cash award to a novice author who is the first author of the best paper published in *Occupational Health Southern Africa* in a calendar year, as judged by the Editorial Advisory Panel. Eligibility for the prize is limited to researchers who have not previously published a paper in *Occupational Health Southern Africa* or any other accredited academic journal. Membership of SASOM is not a criterion.

We are pleased to announce that Ms Leandré Toüa is the winner of this award for 2022. She published the following paper in the first issue of the Journal in 2022:

Leandré is a diagnostic radiographer who completed her National Diploma in Radiography (Diagnostic) at the Central University of Technology, Free State in 2013. In 2014, she started her professional career as a community service radiographer at Kuruman District Hospital in the Northern Cape, and is still employed by the Department of Health. At the start of her career, she occasionally assisted the mines with radiography. She began to ask herself questions, which she decided to answer by conducting research. She completed her BTech degree, and immediately started studying towards a breast screening certificate and a Master’s degree. She has grown a great deal as a researcher and professional and developed a passion for research during her Master’s degree. She hopes to pursue her PhD and would like to lecture in the future as she comes from a family of teachers. She cares for her patients and interacts with them daily. In her free time, she spends time with her children and family. She plays netball for the Kuruman Netball Club to maintain a healthy life-work balance.

Leandré Toüa is the winner of the SASOM Annual Author award for 2022. Photograph: Leandré Toüa
Efficient Hygiene solution

Amtronix and Stanyer Electroserve now offer a comprehensive range of Bacterial/Viral filters for Pulmonary Function and Spirometry from CHP.

CHP filters use a high-quality electrostatic filtration medium with filtration efficiency exceeding 99%, capable of trapping bacteria, viruses and other micro-organisms.

Designed for inspiratory and expiratory manoeuvres, single-use bacterial/viral filters provide an efficient hygiene solution, and protection that virtually eliminates cross-contamination, which keeps both the patient and operator safe without compromising system performance.

The CHP range is available to fit most leading makes of Spirometers and PFT systems and do not have to be approved for use. The filters are independently tested and validated to meet the requirements of local and international standards (ATS/ERS/SATS).

Features:
- The CHP range includes both round and oval filters
- Colour-coded port sizes are tailored to fit a wide selection of equipment
- Unique filter design provides an airtight connection with equipment for accurate results
- Minimal dead space as needed for lung volume and DLCO testing
- Excellent filtration efficiency of bacteria, viruses and micro-organisms
- Low resistance to airflow for accurate Spirometry and lung function results
- Exceeds ATS/ERS guidelines for all criteria

Specifications:
- Filtration efficiency: > 99%
- Differential pressure: < 1.5cm/H2O/L/sec
- Minimal deadspace: < 42 ml

*Specifications are filter dependant. For detailed specifications please contact us.
<table>
<thead>
<tr>
<th>Product Code</th>
<th>Spirometer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFT-2025 (Standard) PFT-2225 (Oval)</td>
<td>ndd Medical Technologies Schiller</td>
<td>EasyOne Air Easy on-PC EasyOne Pro EasyOne Pro LAB SpiroScout SPIROVIT SP-1 G2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Spirometer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFT-2033 (Small) PFT-2533 (Standard) PFT-2233 (Oval)</td>
<td>MIR Vitalograph Micro Medical Schiller MH COSMED CONTEC</td>
<td>All models ALPHA Touch ALPHA 6000 In2itive All models SP-260 LA303 microQuark Quark Spiro Pony FX All models</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Spirometer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFT-2044 (Small) PFT-2544 (Standard) PFT-2244 (Oval)</td>
<td>nSpire</td>
<td>Digidoser KoKo HDoCpet 6000 Sx 1000 NHD4500</td>
</tr>
</tbody>
</table>

Three mouthpiece options*

- Small
- Large
- Oval

0861 268 766 | +27 11 894 4632
info@amtronix.co.za | www.amtronix.co.za
The Q(h)ubeka Trust was formed in 2016 to allocate funds to silicosis-affected mine workers, held its final annual general meeting (AGM) on 5 July 2023 and announced its closure as of 21 April 2023, as provided for in the Trust Deed.

By the date of closing, the Trust had awarded R421 789 144 to 2 280 beneficiaries, based on medical assessments of disease development. Amounts awarded represent 99.2% of the total amount due to 2 301 beneficiaries.

The remaining 0.8% is due to the dependants of 37 claimants, 16 of whom have received their first tranche of payment. These families still need to supply legal proof that they are the heirs of the original mine worker claimants. This money, amounting to R3 503 660, has been set aside for the families to claim – as soon as they have all the necessary official documents from the Department of Home Affairs and the courts.

One of the many problems the Trustees faced was the large number of claimants who passed away since lodging compensation claims against particular mining companies in 2011. Where the claimants were diagnosed with silicosis, the compensation money was due to their heirs. But only a single claimant had written a will – and the courts, which settle compensation money was due to their heirs. But only a single claimant had written a will – and the courts, which settle

The Trust was established following the successful conclusion of a lengthy compensation battle by lawyers representing former mine workers Richard Meeran and Zanele Mbuyisa, who had contracted silicosis as a result of working for various mines owned by Anglo American South Africa Limited and/or AngloGold Ashanti Limited.

The lawyers gave the Q(h)ubeka Trustees (Dr. Sophia Kisting-Cairncross, Alicia Kistan, Goolam Abboobaker, and John Doidge) a list of 4 365 claimants. All had worked underground in South Africa’s deep and dusty gold mines. Together, they had sued the mining companies for dust-related lung diseases, which they believed were contracted from working in unsafe conditions in the mines. The Trustees arranged 3 853 medical assessments by an expert panel of doctors and radiologists. They determined that 2 301 were ‘qualifying claimants’ in terms of the Trust Deed, who had silicosis and could share in the compensation. The Trustees decided how much to pay claimants, depending in each case on their degree of sickness from silicosis and their age.

Dr. Sophia Kisting-Cairncross, Chairperson of the Q(h)ubeka Trust, paid tribute to the efforts of her fellow Trustees, the Q(h)ubeka Trust managers, the network of medical teams, researchers, actuaries, IT experts, rural taxi drivers, food providers, and Q(h)ubeka office and outreach staff in completing the work of the Trust, which had been extended for one year due to the delays of the pandemic and other challenges.

The Trust has also assisted claimants to apply for statutory benefits under the Occupational Diseases in Mines and Works Act (ODMWA), thereby securing potential additional compensation for the claimants.

Dr Kisting-Cairncross said that they were happy with the work that the Trust has been able to achieve. Further, she noted some key lessons learned in the past few years to shape the work of such trusts in future. These include:

1. Mine workers and ex-mine workers must be encouraged to make a will. The Department of Justice runs excellent and informative workshops on how to make a will. The Deputy Master in the Mthatha office, amongst others, has run such workshops in the past year.

2. The high prevalence and severity of silicosis amongst the older group of the Q(h)ubeka Trust cohort is of great concern. This may suggest that we are underdiagnosing silicosis in our region. It is important for us to strive to arrive at the actual burden of silicosis among gold mine workers. It is not an issue for an individual doctor or nurse but requires a collective effort to have ongoing and standardized medical education, quality assurance, and the rigour of scientific research to arrive at that true burden of disease. We owe it to past and to future generations to do this with accuracy. We certainly have the capacity to do this in southern Africa. The effective use of the ILO (International Labour Organization) International Classification on Radiographs of Pneumoconiosis is but one pillar in this process.

3. Doctors and nurses should take the time to obtain a good occupational history from the mine worker or ex-mine worker during the medical examination for occupational lung diseases. Workers should be allowed to have their own work history recorded as they know best what work they have done. We owe them that. Research on the Q(h)ubeka Trust data has shown it is amongst the most trustworthy information we can obtain and will add to the information we already have from other sources.

4. Banks can be approached collectively by different compensation systems and trusts to improve and provide more caring services to mine workers and ex-mine workers in both urban and rural areas. Many of the banks’ service providers have been extremely helpful and empathetic to the mine workers, and many will cooperate.

5. Mine workers and their families need to know their legal right to post-mortem services under the ODMWA. This often constitutes the only opportunity a family has to access compensation for an occupational disease and should be discussed with miners during their medical examinations.

6. Given the interconnectedness of families and the number of claimants who have passed on, it is imperative that gender equality, equity, and gender-inclusive aspects of our compensation processes must be fully integrated in trust systems from inception.

7. Research and, where possible, participatory research is of great importance to share knowledge gained towards greater prevention of occupational lung diseases and tuberculosis.

8. Mine workers and ex-mine workers should be an integral part of the writing of any future settlement trust deeds and be represented by the board of trustees.

Please see http://www.qhubekatrust.co.za for additional information.
Tshiamiso Trust Reviewing Authorities commence with their dispute resolution function

The Tshiamiso Trust is pleased to announce that the much-anticipated Reviewing Authorities have begun their work considering disputes logged by claimants who are not satisfied with the Notice of Ineligibility, Certificate of Medical Finding, or Trust Certification.

The Tshiamiso Trust Deed allows for any claimant who wishes to dispute his or her claim findings, for the reasons listed above, to lodge an appeal with the Reviewing Authority within 30 days of being issued with a disputed determination. The Reviewing Authority Panel comprises independent experts who were not involved in determining the original claim outcome. It is made up of two independent authorities – the medical practitioners appointed to the Medical Reviewing Authority (MRA) review disputes related to medical certification findings, while the lawyers who make up the Certification Reviewing Authority (CRA) review Notices of Ineligibility issued by Lodgement Officers and certifications issued by the Trust Certification Committee. The MRA reviewed its first disputed claims on 15 May 2023 and the CRA considered the first of its disputes on 22 May 2023. The Trust aims to clear the backlog by the end of September 2023.

Tshiamiso Trust CEO, Dr Munyadziwa Kwinda, explains: “The Trust Deed is very prescriptive on eligibility criteria, and we cannot deviate from its stipulated terms. It also makes a provision for claimants to submit a dispute should they disagree with the Trust’s findings. The disputing claimants are encouraged to adhere to the prescribed thirty-day period within which to refer the disputed determination to the reviewing authority. It is important to note that the Trust is mandated to carry out the terms of the settlement agreement, guided by the Trust Deed, which cannot be changed by the Trustees or the management of the Trust.”

As of the end of July 2023, the MRA has considered 1 127 disputes; 48 have been rescinded and 997 have been upheld. The remaining disputes require further consultation, information, or documentation. The CRA has considered 154 disputes of which one has been rescinded and 112 have been upheld. The remaining disputes require further documentation or information.

About the Tshiamiso Trust

The Trust was established to give effect to the settlement agreement reached between six mining companies and claimant attorneys in the historic silicosis and TB class action. The Trust is responsible for ensuring that all eligible current and former mine workers across southern Africa, with permanent respiratory impairment due to silicosis or work-related cardio-respiratory TB, (or their dependants where the mine worker has passed away), are compensated. These beneficiaries are front and centre in all that the Trust does. African Rainbow Minerals, Anglo American South Africa, AngloGold Ashanti, Harmony Gold, Sibanye-Stillwater, and Gold Fields are Founders of the Trust.

Potential claimants, including mine workers or, if deceased, their families, are encouraged to call the Tshiamiso Trust call-back number on 0027 10 500 6186. They can also connect on the Tshiamiso Trust Facebook page and have their questions answered. Visit www.tshiamisotrust.com for more information.

Issued on behalf of:
Tshiamiso Trust: Stakeholder Relations & Communications

e-mail: communications@tshiamisotrust.com

Occupational & Primary Health

Healthy employees

Successful business

With over 28 years’ experience, we provide industry-leading occupational health solutions including medical surveillance and primary care to enhance your business’ financial health. We have the expertise to engage and guide your business, to successfully integrate your workplace wellness requirements by making sure of the following:

- Risk insights and management are reported
- Employees are declared fit for duty through a medical
- All occupational health legal requirements are met successfully
- Mobile and walk-in clinics, where medical surveillance is provided, are present
- Injury-on-duty and COID claims are effectively managed
- Chronic conditions are monitored

Marketing wellness@mam.co.za

momentumhealthsolutions.co.za/occhealth

Momentum Wellness is a division of Momentum Health Solutions (Pty) Ltd, part of Momentum Metropolitan Holdings Limited.
Comparison of illuminance meters in measuring light emitted from incandescent, compact fluorescent, and LED lamps

Cl Holleran, CJ van der Merwe, JL du Plessis

ABSTRACT

Background: To determine if illumination in the workplace complies with regulations and standards, illuminance meters are used to quantify the amount of light illuminating an object, surface, or general workplace. For accurate measurements, the calibration conditions and spectral response of the illuminance meter, and the characteristics of the light source being measured, must be considered.

Objective: We compared the performance of the Goldilux auto-ranging illuminance meter (GL), the Goldilux-LED auto-ranging illuminance meter (GL-LED), and the Konica Minolta CL-70f (KM CL-70f) illuminance meter in measuring light emitted by halogen incandescent lamps (hICLs), compact fluorescent lamps (CFLs), and light-emitting diodes (LEDs).

Methods: The three meters were used to measure illuminance from low-, medium-, and high-powered hICLs, CFLs, and LEDs, one metre away from the outer casings of the lamps.

Results: Results from the three meters were similar when measuring low- and medium-powered hICLs. Substantial differences in illuminance values were observed when measuring high-powered hICLs, CFLs, and LEDs.

Conclusion: The GL, GL-LED, and KM CL-70f meters measured statistically significant differences in illuminance of hICLs, CFLs, and LEDs. To achieve accurate illuminance measurements, illuminance meters with low spectral mismatch uncertainties, spectral responses capable of measuring the entire visible spectrum, and which are calibrated to measure modern lamps, should be used. The South African National Standard (SANS 10114-1:2020) should be revised to include guidelines for the types of illuminance meters used, to promote accurate measurements in the workplace.
Figure 1. Spectral wavelengths of low-, medium-, and high-powered hICLs, CFLs, and LEDs, measured using the KM CL-70f sensor of the illuminance meter. Three low-, three medium-, and three high-powered lamps were tested for each lamp type. Each individual lamp was, thereafter, measured three times with each illuminance meter (nine times in total). The GL and GL-LED meters measured the illuminance levels. In addition to illuminance, the KM CL-70f measured the spectral wavelengths and CCTs of the lamps.

Data analysis

GraphPad Prism 8 (GraphPad Prism, version 8, GraphPad Software Inc., USA) was used for statistical analysis and the creation of figures. Basic descriptive statistics, including means, standard deviations, and ranges were calculated. The D'Agostino and Pearson omnibus test was used to test for normality; it was found that the data were normally distributed, using α = 0.05 as a cut-off point for significance. Welch's analysis of variance (ANOVA) test was used to determine any significant variation in the covariate ambient conditions, such as dry-bulb temperature (ºC), output voltage (V), and output frequencies (Hz). A one-way ANOVA test, followed by Tukey's pairwise comparisons post hoc test, was used to determine if there were any significant differences between the illuminance levels of the different lamp types, as measured by the three illuminance meters. A p value of ≤ 0.05 was considered statistically significant.

The study was approved by the Health Research Ethics Committee (HREC) of the North-West University (NWU) Potchefstroom Campus (clearance certificate number: NWU-00444-20-A1).

Results

The results of a Welch's analysis of variance (ANOVA) determined that covariate ambient conditions (dry-bulb temperature (ºC), output voltage (V), and output frequency (Hz)) did not vary significantly (p > 0.05). Detailed descriptive statistics of illuminance values obtained from each meter are provided in Supplementary Table S1.

Spectral qualities of the lamps

Figure 1 represents the spectral wavelengths of the hICLs, CFLs, and LEDs, where peak wavelength (PW) and dominant wavelength (DW) were measured using the KM CL-70f illuminance meter. The mean PW of all three power levels (low, medium, and high) of CFLs was shorter than that of the hICLs. The DWs of the low-, medium-, and high-powered CFLs were similar to those of the hICLs. The mean PWs and DWs of all LEDs were shorter than those of the other lamp types.

Supplementary Figure S1 shows an example of the quantitative CCT measurements from the KM CL-70f. The manufacturers’ CCT ratings of the hICLs, CFLs and LEDs were 2 900 K, 4 000 K and 6 500 K, respectively. The measured CCT values were similar to the manufacturers’ ratings. The CCT measurements of the low-, medium-, and high-powered hICLs were 2 656.56 K, 2 721.00 K, and 2 731.56 K, respectively. The CCT measurements of the low-, medium-, and high-powered CFLs were higher, at 3 858.44 K, 3 824.89 K, and 3 908.67 K, respectively; and even higher for the low-, medium-, and high-powered LEDs (6 577.11 K, 6 142.78 K, and 6 385.00 K).
Figure 2. Box and whisker plot of illuminance levels of (A) low-, (B) medium-, and (C) high-powered hICLs measured by three illuminance meters, showing the p values of pairwise comparisons as well as means and standard deviations

Illuminance levels of the lamps

Halogen incandescent lamps (hICLs)

Figure 2 shows the illuminance values of low- (28 Watt), medium- (42 Watt), and high- (70 Watt) powered hICLs. There were no significant differences in illuminance levels of low-powered hICLs, using the three illuminance meters (p > 0.05). Illuminance values of medium-powered hICLs, obtained with the GL-LED and KM CL-70f, were not significantly different. In contrast, significant differences between lux values were obtained with the GL and KM Cl-70f. Significant differences were observed between illumination values obtained by the three different illuminance meters for the high-powered hICLs.

Compact fluorescent lamps (CFLs)

Figure 3 illustrates illuminance values of low- (9 Watt), medium- (20 Watt), and high-powered (45 Watt) CFLs. Differences between values obtained using the three illuminance meters were significant, irrespective of the power of the lamp being measured.

Light-emitting diodes (LEDs)

Figure 4 illustrates illuminance values obtained for low- (5 Watt), medium- (9 Watt), and high-powered (14 Watt) LEDs, respectively. Similarly to CFLs, illuminance values obtained from LEDs were significantly different, irrespective of the power of the lamp being measured or the illuminance meter used.

DISCUSSION

There are many factors to consider when measuring illuminance, such as the spectral qualities of the light source(s) being measured and the distance between the light source and the illuminance meter. 10,11 Illuminance meter characteristics, such as spectral response and range capability, cosine response, colour correction, and the quality of the detector embedded within the illuminance meter may all impact accuracy. 11 HICLs have a continuous and smooth wavelength spread across the visible spectrum (shown in Figure 1), which is identical to the spectral wavelength distribution of traditional ICLs. 3 The PWs obtained for all three power levels of hICLs lay within the red spectral band of the visible spectrum (779.78 ± 0.67–780 ± 0.00 nm). 23 Unlike the hICLs, the CFLs displayed various narrow and sharp peaks within the visible spectrum, similar to findings reported by Van Bommel (2011). 24 The PWs of the CFLs were within the green spectral band of the visible spectrum (545.00 ± 0.00 nm), with a smaller peak in the red, and a small peak in the blue spectral bands of the visible spectrum. LEDs presented a prominent PW within the 450.00–485.00 nm blue spectral band of the visible spectrum (450.78 ± 0.67–454.11 ± 0.33 nm) followed by a partially continuous distribution of visible light throughout the rest of the visible spectrum. 24 The hues, determined by the DWs, indicated that hICLs and CFLs had similar DWs, while LEDs had substantially shorter DWs than both hICLs and CFLs. These findings confirm that – apart from DWs, in the case of CFLs and ICLs – CFLs and LEDs have different spectral wavelength qualities than both traditional ICLs and hICLs. 13 Of note is that, for any specific type of lamp, the spectral compositions were almost identical for the different power levels. Measured CCTs compared favourably with the lamp specifications, with all measurements falling within 10% of the manufacturers' specifications. The three illuminance meters recorded significantly different values in most instances (22 of 27). For all three meters, the
Workplace is vital to determine if lighting in an occupational environment complies with regulations and standards. However, in most cases, different meters could be assessed against regulations and obtain different illuminance values from different meters. This can be ascribed to differences in spectral range, spectral mismatch uncertainty and a spectral response capable of measuring light illuminating an object, surface, or general environment accurately. Occupational hygiene practitioners should be aware of the limitations of the instruments used for measuring light sources accurately. Illuminance meters should also advance to measure modern light technology used in the workplace, as well as means and standard deviations where the meters are placed at different distances from a light source. This will more realistically depict illuminance levels in workplace settings, lighting positioning, lamp type, and required specifications an illuminance meter needs to conform to, in order to obtain accurate illuminance measurements in the workplace.

CONCLUSION

While the differences identified between illuminance meters are incomplete. Considering the technological development/progress of available lighting technology used in the workplace, there is a need for the revision of the South African National Standard for illuminance meters. This standard should be revised to promote increased productivity. Employers are required to measure light in the workplace accurately, selecting an illuminance meter for monitoring workplaces. There are different uses of illuminance and should apply careful considerations when measuring CFLs and LEDs due to spectral mismatch errors in the lamp used to calibrate these illuminance meters. When comparing the specifications of illuminance meters, showing the p values of pairwise comparisons in most cases. Thus, one can measure the same lamp and get different illuminance values from different meters. This can be ascribed to differences in spectral range, spectral mismatch uncertainty and a spectral response capable of measuring light illuminating an object, surface, or general environment accurately. Occupational hygiene practitioners should be aware of the limitations of the instruments used for measuring light sources accurately. Illuminance meters should also advance to measure modern light technology used in the workplace, as well as means and standard deviations where the meters are placed at different distances from a light source. This will more realistically depict illuminance levels in workplace settings, lighting positioning, lamp type, and required specifications an illuminance meter needs to conform to, in order to obtain accurate illuminance measurements in the workplace.
Wind-driven roof turbines’ effectiveness in enhancing household ventilation: a potential tool to reduce tuberculosis infection

E Mutava 1, T Singh 2,3,4, D Brouwer 1

1 Occupational Health Division, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
2 National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
3 Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
4 Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa

Derk Brouwer is a member of SAIOH

Correspondence
Prof. Derk Brouwer,
e-mail: derk.brouwer@wits.ac.za

Keywords
indoor air quality, CO₂ decay method, TB infection risk, Wells-Riley model, airborne infection control

How to cite this paper

ABSTRACT

Background: South Africa’s overburdened healthcare systems have led to criticism of its unsustainable tuberculosis management interventions. In 2011, the National Department of Health implemented an outpatient, decentralised care model, but this increased costs and jeopardised the long-term viability of prevention measures. Home confinement is now recognised as a viable intervention option, when combined with safety precautions such as ventilation and medical support. However, little is known about the risk of infection in this context.

Objectives: To assess the effectiveness of wind-driven roof turbines in enhancing ventilation and their potential to lower the risk of Mycobacterium tuberculosis infection in a residential setting.

Methods: Eight houses were selected and divided equally into intervention (wind turbines installed) and control groups, using a pairwise comparison method. The CO₂ decay method was used as a proxy to determine ventilation in the houses. The wind-driven roof turbines’ potential to lower the risk of Mycobacterium tuberculosis infection was stochastically evaluated using the Wells-Riley mathematical model.

Results: During two seasons, installation of a roof turbine resulted in twofold ventilation rates compared to the control houses. Consequently, the Wells-Riley model predicted a twofold reduction in the probability of infection in the intervention compared to the control households.

Conclusion: Low-cost, low-maintenance wind-driven roof turbines are effective in increasing ventilation in houses, and should be considered as an additional layer of protection against Mycobacterium tuberculosis and other infections in residential settings.
approximately 450,000 people. Approximately 76% of the houses in the Diepsloot township were closed and the residents had left — CO₂ gas was slowly released from the houses. Trained technicians installed the turbines in accordance with the South African Residential Ventilation Building Code (SARVBC), which recommends an average natural infiltration rate of 0.35 m³/h/m². This is equivalent to 6.9 L/s per person. In this paper, the natural ventilation in the houses was assessed using the CO₂ concentration levels as the outcome variable. The air exchange rate in air space was estimated using Equation 1:

\[Q = \text{ACH} \cdot V \cdot \text{cf} \]

where

- \(Q \) is the ventilation rate (L/s),
- \(\text{ACH} \) is the air change rate (h⁻¹),
- \(V \) is the volume of the room (m³), and
- \(\text{cf} \) is the correction factor (1000 (l/m³)/3600 (s/hr)).

The ventilation rate in the houses was calculated from the air volume and the operation of the wind-driven roof turbine. The CO₂ concentrations were log-transformed and the log values were averaged within the two groups.

The study design required a comparison of the intervention group where wind turbines were installed; each visit started with an hour-long measurement of the IAQ parameters of temperature, humidity, and CO₂ concentration. The turbines had a 240 mm diameter curved vane and spherical shape, and were ducted directly into the rooms. The mean age of the houses was 15.5 ± 2 years; the median number of inhabitants per house was four.

The infection risk (\(S - Q \)) was calculated as the product of the number of susceptible people in the indoor space (\(S \)), the probability of infection (\(P \)), and the average natural infiltration rate (\(Q \)). The ratio \(VR/\text{average number of house occupants} \) provides an estimate of the transmission of \(M. \) tuberculosis in improving ventilation in houses, and their potential to lower the risk of active tuberculosis in patients not on treatment, was used. The ratio \(VR/\text{average number of house occupants} \) was further converted into an average natural infiltration rate with clean air.

The objective of this study was to assess the effectiveness of wind-driven roof turbines in improving ventilation in houses, and their alternative to mechanical ventilation in poor-resource settings. Recommendations have been made to investigate the feasibility of low-cost, simple-to-implement natural ventilation enhancers, as an alternative to mechanical ventilation in poor-resource settings.
In this study, we demonstrated that installing wind-driven turbines effectively increases house ventilation, and reduces the risk of infection in the houses without wind turbines by a factor of two. The risk of infection in the houses without wind turbines would have been roughly twice that of the infection risk in houses with wind turbines.

Studies on ventilation and transmission of infections such as Mycobacterium tuberculosis for occupants.

Table 2. Differences in IAQ parameters between houses with and without wind turbines during the study period

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean (SD) House with Turbine</th>
<th>Mean (SD) House without Turbine</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor-draught temperature (°C)</td>
<td>25.2 (3.4)</td>
<td>27.5 (4.2)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Relative humidity (%)</td>
<td>45.2 (5.8)</td>
<td>39.7 (6.1)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CO₂ concentration (ppm)</td>
<td>0.5 (0.1)</td>
<td>0.7 (0.2)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

The estimated ventilation rate in houses with wind turbines was lowest in winter during the day, at 5.0 and 2.1 L/s/person, respectively. The acceptable ventilation rate of 6.9 L/s per occupant, as per the SARVBC requirements, could only be achieved between control and intervention houses and households.

Table 3 shows the comparison of air exchange and ventilation rates in houses with and without the wind turbine. The AERs were > 1 for the houses with wind turbines, and < 1 for those without, satisfying, because the most likely time for internal air pollution is at night. 25 Consequently, thermal currents form, inducing turbine rotation and expelling warm air from the structure. The wind-driven technology is described as ‘passive ventilation’ because of the result of the wind turbines, there were no statistically significant differences in CO₂ level and temperature (p > 0.05), and a marginal difference in relative humidity levels (p = 0.057).

Table 4 shows the comparison of the risk of infection in the houses with and without wind turbines, by time of day and season. In all instances, the risk of infection was greater in the houses without than in those with wind turbines.

We matched the participating households in our study to demonstrate a sufficient match was achieved between control and intervention houses and households.
Since we demonstrated the beneficial effects of installing wind-driven turbines.

Table 3. Comparison of air exchange and ventilation rates in houses

<table>
<thead>
<tr>
<th>Days</th>
<th>Winter*</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes & No</td>
<td>0.1136</td>
<td>0.1289</td>
</tr>
<tr>
<td>*Windows and exterior door closed, **For average house occupancy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Risk of infection in households with and without wind turbines

<table>
<thead>
<tr>
<th>Infection Risk (%)</th>
<th>Yes & No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winter*</td>
</tr>
<tr>
<td>Yes</td>
<td>52.8</td>
</tr>
<tr>
<td>No</td>
<td>79.2</td>
</tr>
</tbody>
</table>

KEY MESSAGES

1. Wind-driven roof turbines enhance IAQ and comfort.
2. Improved ventilation achieved by installing wind-driven turbines can significantly reduce airborne TB infection risk.
3. Low-cost, low-maintenance wind-driven ventilation systems should be considered for an additional layer of protection against transmission of Mycobacterium tuberculosis in indoor settings.

REFERENCES

2. Improved ventilation achieved by installing wind-driven turbines.

DECLARATION

The authors declare that this is their own work; all the sources used in this paper have been duly acknowledged and there are no conflicts of interest.

AUTHORS’ CONTRIBUTIONS

Data acquisition: EM
Data analysis: EM, DB
Interpretation of the data: EM, DB
Critical revision of the paper: EM, TS, DB
Drafting of the paper: EM

ACKNOWLEDGEMENTS

We thank the study participants, the University of the Witwatersrand’s School of Public Health’s Anglo-American Endowed Chair in Occupational Hygiene for funding the study and providing necessary study tools, the National Institute for Occupational Health (NIOH) for their assistance with the study, and M. Jafta and Mr. Njabulo Xulu from the NIOH for their assistance with the study. We thank the study participants, the University of the Witwatersrand’s School of Public Health’s Anglo-American Endowed Chair in Occupational Hygiene for funding the study and providing necessary study tools, the National Institute for Occupational Health (NIOH) for their assistance with the study, and M. Jafta and Mr. Njabulo Xulu from the NIOH for their assistance with the study. We thank the study participants, the University of the Witwatersrand’s School of Public Health’s Anglo-American Endowed Chair in Occupational Hygiene for funding the study and providing necessary study tools, the National Institute for Occupational Health (NIOH) for their assistance with the study, and M. Jafta and Mr. Njabulo Xulu from the NIOH for their assistance with the study.
16. Bolashikov ZD, Melikov AK. Methods for air cleaning and protection of

Secondary trauma amongst administrative support staff working with traumatic incident dockets within the South African Police Service in Johannesburg, South Africa

MF Manganyi, SV Moodley, J Shirinde

ABSTRACT

Background: Secondary trauma is trauma experienced by those in close contact with the victims of trauma. Research shows that some individuals exposed to photographs or video presentations of traumatic events may experience secondary trauma. This includes administrative staff within the South African Police Service (SAPS), who work with trauma dockets.

Objectives: We explored the effects of secondary trauma on administrative support staff within the SAPS, their access to psychological support in the SAPS, and their use of the employee health and wellness (EHW) services in the SAPS.

Methods: An exploratory qualitative study was conducted among administrative support staff from one of the four Johannesburg clusters of the SAPS. In-depth interviews took place with seven staff members. The data were analysed using Atlas.ti.

Results: Administrative support staff are exposed to trauma through incident dockets, victim statements, and gruesome images. The study participants indicated that they experienced trauma daily, and symptoms of trauma such as flashbacks, anxiety, sadness, nightmares, paranoia, avoidance, recurrent thoughts, and fear of death. They were overprotective of their loved ones and paranoid. They were not utilising the EHW services due to lack of access to appropriate services, or the stigma attached to seeking help from mental health professionals.

Conclusion: The SAPS needs to develop and implement a strategy to mitigate the impact of secondary trauma on its personnel, which include administrative support staff. Evidence-based interventions, such as resilience training, should be considered as part of the strategy.
Occupational Health Southern Africa

Sign in to view
secondary traumatic stress. A curriculum for building resiliency amongst administrative staff. Interventions to build resilience currently in place to address the issue of secondary trauma no evidence of specific services, programmes, or interventions post-traumatic stress disorder among police officers, we found programme may address some mental health issues, including regardless of sex, age, or number of years in the service.

The negative effects of secondary trauma affected all participants pants overcompensated with excessive control of their children. finding was the effect of traumatic exposure on parenting: participants revealed that parents overcompensated with excessive control of their children. The decision to participate in the study is not influenced by the experience of secondary trauma, which impacted their mental health and family relationships. Administrative support staff working in high-risk environments in the SAPS were affected by secondary trauma, which impacted their mental health and family relationships. The findings from this study showed that administrative support staff working in high-risk environments in the SAPS were affected by secondary trauma, which impacted their mental health and family relationships.

DISCUSSION

Employee health and wellness (EHW) services: access

Although this was a small exploratory study, it raises an important issue for future research within the South African Police Service. Further research is required to determine the extent to which administrative support staff working in high-risk environments in the SAPS experience secondary trauma and its consequences are within the SAPS. Future research should include screening for and reporting on specific mental health issues such as post-traumatic stress disorder among police officers. A larger survey is needed to determine how widespread secondary trauma and its consequences are within the SAPS. Future research should include screening for and reporting on specific mental health issues such as post-traumatic stress disorder among police officers. A larger survey is needed to determine how widespread secondary trauma and its consequences are within the SAPS.

Acknowledgements

The authors wish to acknowledge the South African Police Service (SAPS) for their permission to allow the study to be conducted. The authors wish to acknowledge the South African Police Service (SAPS) for their permission to allow the study to be conducted. The authors wish to acknowledge the South African Police Service (SAPS) for their permission to allow the study to be conducted. The authors wish to acknowledge the South African Police Service (SAPS) for their permission to allow the study to be conducted.
Occupational malaria: lessons for occupational health practitioners

M Ross,1,2 J Frean editor

1 School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
2 Scientific Committee for Biohazards and Occupational Health, International Commission on Occupational Health
3 Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
4 Wits Research Institute for Malaria, University of the Witwatersrand, Johannesburg, South Africa

Mary Ross is an Honorary Life Member of SASOM and MMPA

Correspondence
Prof. Mary Ross
e-mail: profmaryross@yahoo.com

How to cite this paper
ISSUES IN OCCUPATIONAL HEALTH

USA military personnel. 10 Malaria continues to be a major vector-borne disease of concern for the military worldwide. 14 In the 1990s, falciparum malaria was eliminated in the 1940s, the majority originated in sub-Saharan Africa; of those who provided information, 92% took chemoprophylaxis. 18 They concluded that business travellers need pre-travel advice, which is currently lacking no or incomplete chemoprophylaxis. 17 A number of fatal malaria had not taken chemoprophylaxis, while the other 32% took with malaria, predominantly falciparum. 11 America, Chen and colleagues (2018) reported that 9% presented with malaria, predominantly falciparum (personal communication, SA Port Health Service). 24 To unify the concept under one name, the term ‘odyssean malaria’ has been used, depending on the putative mode of mosquito transport, 27 odyssean malaria, by its nature, is always present when a mosquito, or mosquito-borne disease, enters an area where it is not endemic. 25 In South Africa, researchers. 13

<table>
<thead>
<tr>
<th>Year</th>
<th>Scenario Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Truck mechanic in a town on a busy national road</td>
</tr>
<tr>
<td>2013</td>
<td>Work at police station involved illegal immigrants</td>
</tr>
<tr>
<td>2015</td>
<td>Worker involved with rail and road trailers</td>
</tr>
<tr>
<td>2016</td>
<td>Mine hostel resident</td>
</tr>
<tr>
<td>2017</td>
<td>Worker at import-export business</td>
</tr>
</tbody>
</table>
Health effects of silica dust exposure – what do we need to do?

Gill Nelson: Occupational Health Division, School of Public Health, University of the Witwatersrand, South Africa
e-mail: gill.nelson@wits.ac.za

On 28 March 2023, a satellite workshop, as part of the South Africa Sweden University Forum (SASUF) Research and Innovation Week 2023, was held at the University of the Witwatersrand School of Public Health. Ninety-five participants attended online from South Africa and several countries, and 28 attended in person. Prof. Tobias Chirwa, Head of the School of Public Health, welcomed all attendees. The workshop presentations and issues raised are summarised under the four themes of the workshop.

Overview of silica-related health effects and magnitude of the problem

Gill Nelson: Occupational Health Division, School of Public Health, University of the Witwatersrand, South Africa
e-mail: gill.nelson@wits.ac.za

Millions of people are exposed to silica dust, worldwide, from a variety of industries, and silicosis rates remain high. The risk of developing silicosis is lifelong and continues after exposure has ceased. Silicosis data are available for some large industries but not for smaller businesses (usually unregulated), and artisanal and informal workers, which include women and children.

Quartz is the most common form of crystalline silica and the most common mineral in the earth’s crust, so it is a component of most sand and rocks. Workers in many industries are exposed to silica dust. Aside from the well-known occupations, such as gold mining, construction, and artificial stone manufacture, those involved in tunnelling, denim jean production, jewellery production, hydraulic fracturing, agriculture, and paint manufacturing (to name a few) are also potentially exposed to silica dust.

In the mining industry, silica dust is most prevalent in gold and coal mining, oil and gas mining, and shale and diatomaceous earth mining. Most affected are miners, drillers and crushing machine operators. In the construction industry, workers are exposed to silica dust from concrete, brick, granite, and tiles. Road working and stone working are also hazardous occupations. Exposure to silica flour is also a risk for silicosis as it comprises very fine grains of silica used in grouting, metal polish, abrasive cleaners, sandpaper, and toothpaste. Silica nanoparticles are produced on an industrial scale as additives to cosmetics, drugs, printer toners, varnishes, and food, and are being developed for biomedical and biotechnological applications such as cancer therapy, and drug delivery. Long-term toxicity due to accumulation of these nanoparticles is under investigation.

Challenges

• For some diseases, there is a clear dose-response relationship (e.g. simple silicosis). For others, the dose-response relationship is less clear (e.g. auto-immune diseases).
• All of the diseases, apart from silicosis, are associated with other exposures, e.g. chronic obstructive pulmonary disease (COPD) and cigarette smoking, TB, and HIV.
• For these other diseases, the association with silica dust exposure is often overlooked, e.g. chronic renal disease and rheumatoid arthritis.
• There are diagnostic challenges, particularly in distinguishing silicosis and TB.
• Many questions remain, e.g. what is the interactive effect of smoking and silica dust exposure on COPD and lung cancer?
Silicosis and tuberculosis — unanswered questions and research needs

Rodney Ehrlich: Division of Occupational Medicine, School of Public Health, University of Cape Town, South Africa
e-mail: rodney.ehrlich@uct.ac.za

Although silicosis and tuberculosis were identified as closely related but distinct entities in the early 20th century, there are still many unanswered questions about their relationship and combined management. This brief overview is based on experience with gold miners from the South African mines, although the questions have global application.

What is the silica dust concentration threshold for increased risk of TB?
We do not know whether control of silicosis will also control the excess risk of TB due to silica.1 Cohort studies are needed, which control for radiological silicosis, measure silica exposure accurately, and control for other confounders.

What is needed to better distinguish radiologically between silicosis, TB, and combined disease in individuals from populations with a high risk of both diseases?
Training on the International Labour Organization (ILO) Pneumoconiosis Classification is necessary but not sufficient. Training is needed on taking an informed occupational history and on the radiological appearances of post-TB (fibrosis, nodulation, cystic changes/bronchiectasis, lung distortion, pleural sequelae) and of active TB.2 Development of training materials for involved clinicians and evaluation of such training are needed.

What is the optimal TB treatment regimen for active TB combined with silicosis?
Cohort studies have found a two-to-three times worse clinical outcome for silicotuberculosis than for TB alone.3-4 Past clinical trials offer conflicting evidence on the optimal regimen and period of treatment (e.g. five to nine months).5-6 Updated research using the latest regimens is needed.

Is TB preventive treatment (TPT) of individuals with silicosis realistic in low-resource settings?
There is limited and mixed evidence of the effectiveness of TPT in silicosis and the period of treatment.4,5 South African national guidelines recommend TPT for persons with silicosis for three months (weekly rifapentine and isoniazid) or 12 months (daily isoniazid).6 The extent of local implementation is unknown and questions regarding regimen, acceptability, feasibility, and coverage remain, particularly among examiners. Updated research using the latest shorter regimens is needed.

How frequently should individuals be examined for silicosis and silicotuberculosis?
Currently, active miners in South Africa are required by law to be examined annually while the Occupational Diseases in Mines and Work Act provides for ex-miners to be examined every two years. This latter provision has historically hardly been implemented in the case of black miners, many of whom do not live in South Africa.10 Even with these limitations of access, the Medical Bureau for Occupational Diseases (MBOD), the state agency responsible for certifying occupational lung disease in miners, has struggled with large backlogs in recent years.11 This raises the question of the frequency of examination of ex-miners is feasible, taking into account the need to determine eligibility for compensation in an impoverished population and to identify TB given a very high risk of active disease.

In populations with high burdens of silicosis and TB, what is the role of sputum examination using GeneXpert or equivalent?
Individuals with silicosis have four times the risk of TB than those with TB alone.1 In populations with both disease burdens, the diagnosis of active TB is confounded by chest X-ray (CXR) abnormalities and chronic respiratory symptoms attributable to silicosis and post-TB. On the other hand, half of individuals with active TB may have no symptoms.12,13 Xpert (and Xpert Ultra) have been shown to attain high sensitivity and specificity against TB culture.14 Protocols are needed for the threshold for sputum examination when examining individuals from such populations, and for rational empirical treatment in the case of negative sputum tests.12,14

Can use of computer-aided detection systems for reading CXRs increase the ability to conduct such surveillance?
Computer-aided detection (CAD) is recommended by the World Health Organization (WHO) for CXR screening for active TB in high-risk groups, which includes workers exposed to silica dust.15 Independently, CAD has been shown to achieve high performance metrics for identification of silicosis in miners.16 Acceptability, feasibility, and costing studies of application of CAD for TB and silicosis in low-resource settings are needed.17

REFERENCES
Silica-associated lung cancer

Jill Murray1,2, Deepna Lakhoo2,3
1 School of Public Health, University of the Witwatersrand, South Africa
2 Pathology Division, National Institute for Occupational Health, National Health Laboratory Service, South Africa
3 School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa

e-mail: jill.murraysa@outlook.com deepnal@nioh.ac.za

Worldwide, lung cancer is one of the most commonly diagnosed malignancies and is the leading cause of cancer mortality; for example, in the USA, it comprises 21% of all cancer deaths.1 In the general population, tobacco smoke is the main risk for lung cancer and there is evolving evidence of increased risks due to smoking combined with other lung carcinogens. However, what is less well appreciated, both by the medical profession and the general public, is the contribution of occupational factors. The population attributable fraction of occupational lung cancer is reported to be as high as 15%.2 Of the occupational exposures, asbestos is the most common, but there are many other workplace carcinogens, including arsenic, radon, polycyclic aromatic hydrocarbons, and silica.

In 1997, the International Agency for Research on Cancer (IARC) designated silica as a carcinogen3 but, at that time, the carcinogenicity was questioned because of the absence of dose-response findings in studies, and the concern that confounding variables, in particular smoking, had not been adequately addressed.4 In 2012, the IARC performed an updated meta-analysis, which confirmed the carcinogenicity of silica and clearly demonstrated a positive exposure-response relationship.5 These findings greatly contributed to the lowering of the occupational exposure limit (OEL) to 0.05 by the Occupational Health and Safety Administration (OSHA) in 2016.6 However, a number of uncertainties remained, with implications for medical screening, prevention, setting of OELs, and lung cancer treatments. Is the presence of silicosis a necessary prerequisite to attribute lung cancer in an individual to silica exposure? What is the combined effect of silica and smoking? Is there a silica exposure threshold below which lung cancer will not occur? Is there an association with specific histological subtypes?

Subsequent research has shed light on these uncertainties. First, the risk of lung cancer is elevated in both those with and without radiological signs of silicosis,7 and the effect of smoking is likely multiplicative8 (see Figure 1). With regard to histological type, some studies have suggested an increased risk of all types of lung cancer,8 while others have reported a strong association with small squamous cell carcinomas9 – subtypes that are less responsive to therapy than adenocarcinomas.10

As a result of relatively recent advances in lung cancer management, the outlook has shifted from one of nihilism to cautious optimism.1 Subsequent to research conducted in the USA that showed that screening with low-dose computed tomography (LDCT) substantially reduced lung cancer mortality,11 programmes targeted at current and former smokers have been widely instituted in well-resourced settings. There are no official screening programmes for lung cancer in South Africa. However, the South African Thoracic Society made broadly similar recommendations in 2019 with pointers to guide interpretation,12 given the high local prevalence of tuberculosis. With regard to treatment, molecular profiling of tumours, undertaken in sophisticated pathology laboratories, is resulting in targeted, individually tailored therapy.10

There are several important implications for the management of silica-exposed populations in South Africa. Chest radiographs are the most widely used modality for silicosis diagnosis – but they not only miss half the cases of pulmonary silicosis using autopsy as the gold standard,13 but also do not meet the requirements for lung cancer screening.4 Studies are necessary to clarify the efficacy

of LDCT screening in populations in which silicotrephuberculosis is not infrequent. Research directed at treatment should include a focus on the cells and genes activated by silica exposure to identify potential therapeutic targets. Primary prevention should aim not only to reduce exposure to silica, but also carcinogens, particular tobacco smoke. For workers with lung cancer, clear criteria for compensation need to be established. Finally, research is needed to evaluate the burden of silica-associated lung cancer in both mining and non-mining populations.

REFERENCES

Figure 1. Silica dust exposure risks for lung cancer

<table>
<thead>
<tr>
<th>Exposure status</th>
<th>SMR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever smoker and ever silica</td>
<td>8.72</td>
<td>8.00–9.52</td>
</tr>
<tr>
<td>Never smoker and ever silica</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Never smoker and never silica</td>
<td>1.02</td>
<td>0.87–1.19</td>
</tr>
<tr>
<td>Ever smoker and never silica</td>
<td>6.37</td>
<td>5.91–6.87</td>
</tr>
</tbody>
</table>

THEME 2: SILICOSIS ELIMINATION PROGRAMMES

Chair by Dr Vanessa Govender, Director: Masakhane Health, South Africa

Silicosis elimination programmes in the non-mining sector: a global context

Background
Elimination of silicosis has been on the global agenda since the 1930s. In 1995, the ILO/WHO Joint Committee on Occupational Health recommended countries to place elimination of silicosis high on their priority lists. 1 In the same year, the Global Programme for the Elimination of Silicosis (GPES) was initiated. Following this, countries such as Brazil, China, Chile, India, Thailand, Vietnam, and South Africa joined the programme and formed their own National Programmes for the Elimination of Silicosis (NPEs). 1

Methods
A scoping review was conducted to explore silicosis elimination programmes in the non-mining industry, globally, through an extensive search for both scientific and grey literature.
published from 1995 to 2021. Of the 1,277 articles identified, 10 met the eligibility criteria (two journal papers, three reports, four presentations, and one fact sheet). Eight countries were represented: the Americas (Brazil, Chile, Peru), Asia (Vietnam, Thailand, China), Africa (South Africa), and Europe (Turkey).

Findings
Countries used four key strategies to implement their NPES activities:
1. Intra- and inter-national collaborations
2. Capacity building through training
3. Policies, guidelines, and silicosis prevention measures
4. Occupational health surveillance and prevalence studies

Intrernational collaborations were initiated among government ministries as well as with occupational health and safety-related organisations. The Americas Silicosis Initiative (initiated in 2005) and the Work and Health in Southern Africa (WAHSA) programmes are good examples of regional collaborations. In countries such as Brazil, Chile, and Peru, training was conducted on dust control technologies (control banding) and diagnosis of silicosis using the ILO’s International Classification of Radiographs of Pneumoconioses.

To ensure that prevention measures were adhered to, countries developed policies through their NPES. For example, Brazil banned the use of sand as a blasting agent and dry finishing of ornamental stones. Chile developed a risk assessment guidance tool, the ‘Qualitative Evaluation of the Risk of Exposure to Silica’ for assessment and control of silica exposures in four high-risk industries: aggregate crushing, ceramics, tile making, and dental laboratories. Surveillance and prevalence studies were identified as essential for the monitoring of trends of several indicators (e.g. the proportion of workers using protective personal equipment (PPE)).

Challenges
Several challenges hindered progress of NPES activities across different countries. Some of these included:
1. Insufficient political will
2. Insufficient access to information and knowledge
3. Shortage and/or inadequacy of human resources
4. Legislation shortcomings:
 a. Poor enforcement
 b. More focus on fact finding than problem solving
5. Shortage or inadequate allocation or re-allocation of financial resources
6. Insufficient primary prevention measures

Insights
There is a gap in reporting progress of the NPES and GPES, which may indicate a loss of momentum of global efforts to eliminate silicosis. While experiences from Switzerland, Germany, Finland, and France indicate that silicosis incidence can be reduced, there has been a resurgence in some countries e.g. Australia and Sweden. Vigilance through surveillance is therefore needed to respond to new exposures and epidemics.

Food for thought
- Is the WHO and ILO target to eliminate silicosis by 2030 achievable?
- What are the best silicosis elimination strategies for the African non-mining industry, including the informal sector?
- What lessons can the non-mining industry draw from the mining industry?
- How can we translate strategies/experiences from countries such as Belgium and Switzerland to suit the southern African context?

Acknowledgements
Ntombizodwa Ndlovu, Threshni Chetty, Nelisiwe Fakudze, Taile Kgoete, and Lebogang Mogongoa (School of Public Health, University of the Witwatersrand); Edward Sepiriwa and Odette Volmink (National Institute for Occupational Health); and the Department of Employment and Labour (South Africa).

REFERENCES

Moving abroad, Prof. Anna-Carin Olin (University of Gothenburg), who was visiting South Africa for the SASUF Research and Innovation Week, described the current situation with regard to silica dust exposure in Sweden.
The exposure pattern to silica dust has changed dramatically in Sweden during the last decade. The mining sector has changed from having more than 1 000 small mines back in history; the number is now down to 15. Quarrying also used to be a big industry, employing more than 7 000 workers, but has decreased in size and currently employs around 1 200 workers. Much of the stonework is now exported, mainly to China, where poor working conditions have been described. Initiatives have been taken to strengthen procurements to include standards for the work environment for imported stone, but many anomalies still probably exist.

Moving back to South Africa, Jabulile Mhlophe (Department of Employment and Labour) gave an update on the silica dust and silicosis milestones.

South Africa’s National Programme for the Elimination of Silicosis – where are we?

Jabulile Mhlophe: Occupational health and hygiene specialist, Department of Employment and Labour, South Africa e-mail: Jabu.Mhlophe@Labour.gov.za

In 2004, the Department of Employment and Labour initiated the National Programme for the Elimination of Silicosis. Two years later, in 2006, the National Working Group (NWG) and Provincial Working Groups (PWGs) were established to manage the programme, but lack of baseline data on the prevalence of silicosis in South Africa made it difficult for the working groups to achieve their mandates. In 2009, the Council for Scientific and Industrial Research (CSIR) was commissioned to conduct a literature review on silica dust exposures of workers in the non-mining industry, especially in South Africa. The review revealed that there was no information regarding the most frequently recorded occupations where silicosis was listed as a contributory cause of death in the South African non-mining sector, although, from 1999 to 2004, the Occupational Medicine Clinic at the National Institute for Occupational Health (NIOH) diagnosed silicosis in workers from foundries and potteries, and from the refractory, engineering, stone crushing, construction, chemical, and glass industries. The authors also stated that “Lack of a comprehensive programme on worker exposure to silica dust and a commitment from the management on this type of programme is a problem in the non-mining industries.”

In the same year (2010), the Department of Employment and Labour embarked on an inspection of 208 silica dust producing companies in all the provinces to determine compliance with silica dust levels in terms of the Occupational Health and Safety Act of 1993. Only 54 companies (26%) were found to be compliant.

During the 1960s, there was a large campaign to reduce exposure to quartz in Swedish mines. This was as a result of analysis of data from the national silicosis register, which revealed that more than 4 500 workers – mainly employed in quarrying – had developed silicosis. The campaign was successful: exposure levels were dramatically reduced and morbidity decreased. Subsequently, there has been a gradual reduction in Sweden’s preventive measures. The silicosis register was stopped in 1988, and legislation prescribing obligatory quartz measurements in specified workplaces was abandoned in 2019. This has resulted in a lack of knowledge about the current exposure situation in Swedish workplaces and an ignorance of the problems associated with silica exposure. Sectors where exposure to silica dust still seems to be a problem are construction and concrete manufacturing, which employ many workers.

Strong initiatives, from researchers in occupational and environmental departments in Sweden, have been taken to lower the current OEL for quartz from 0.1 to 0.05 or 0.025 mg/m³, but efforts have been fruitless so far.

REFERENCES

Silicosis elimination in the South African mining industry

Thuthula Balfour: Head of Health, Minerals Council South Africa
e-mail: tmbalfour@mineralscouncil.org.za

The elimination of silicosis remains a priority in the South African mining industry as evidenced by the number of cases that are still reported annually. Although cases of silicosis declined by 86.5% from 2008 to 2021, there were still 240 cases reported in 2021. This is a significantly high number.

It is ironic that the first international conference on silicosis was convened by the ILO and the Transvaal Chamber of Mines, and paved the way to the adoption of a 1934 ILO convention that recognised silicosis as an occupational disease.

Over the years, South Africa has led research on silicosis. In a seminal study conducted in 2004, Gavin Churchyard et al. found an 18.3–19.9% prevalence of silicosis in 520 gold miners with mean service of 21.8 years, at quartz levels of 0.053 mg/m³. With this and other evidence, better performance regarding the elimination of silicosis in the country would have been expected.

This irony is well articulated by Jock McCulloch in his book, South Africa’s Gold Mines and the Politics of Silicosis, in which he states: “The history of silicosis in South Africa is filled with paradoxes. The Rand mines were the first in the world to invest heavily in dust extraction technologies and instruments, such as the konimeter, to reduce risk. South Africa was the first state to recognise silicosis and tuberculosis as occupational diseases, and the gold mines were the first to use radiography to screen workers. Yet South Africa was unsuccessful in making the mines safe or in providing adequate compensation. The major paradox is between the intensity of public debate about silicosis and the invisibility of the disease burden.”

There have been concerted industry initiatives from both the Mine Health and Safety Council (MHSC) and the Minerals Council South Africa to eliminate silicosis and other pneumoconioses. In 2003, through the MHSC, the industry adopted milestones, which were re-emphasised in 2013:

1. By December 2024, 95% of all exposure measurement results will be below the milestone level for respirable crystalline silica (RCS) of 0.05 mg/m³.
2. By December 2024, 95% of all exposure measurement results will be below the milestone level for coal dust respirable particulate of 1.5 mg/m³ (< 5% crystalline silica).
3. Using current diagnostic techniques, no new cases of silicosis, pneumoconiosis, or coal worker’s pneumoconiosis will occur amongst previously unexposed individuals who joined the industry in 2009.

In 2007, the Minerals Council developed the Mining Occupational Safety and Health (MOSH) leading practice adoption system and rolled out several leading practices in mines, such as the fogger dust suppression system, footwall and sidewall treatment, scraper winch covers, multistage filtration system, and continuous real-time monitoring of airborne pollutants. The Minerals Council also established a milestone reporting system in 2015 to monitor progress towards achieving the milestones.

Consequently, the mining industry is on target to meet the milestone on RCS. In 2022, 63% of exposures were higher than 0.05 mg/m³, lower than the aspirational target of 7%. A few cases of silicosis have, however, been diagnosed in novices who joined the industry after 2009. This is a cause for concern as it indicates previous high levels of exposures.

In conclusion, South Africa has the knowledge and ability to eliminate silicosis and all efforts should be directed at this task.

REFERENCES

THEME 3: OCCUPATIONAL EXPOSURE LIMITS

Chaired by Prof. Cas Badenhorst, Anglo American and North-West University, South Africa

More technical presentations followed, starting with an online discussion by Prof. Derk Brouwer (University of the Witwatersrand), who pertinently asked the question: “Should the current statutory OEL for silica be reduced to 0.05 mg/m³?” This question was further debated by Prof. Cas Badenhorst (North-West University) as he explained the challenges in reducing the statutory RCS OEL in the SA mining industry.

Will reducing the statutory OEL for silica to 0.05 mg/m³ prevent new silicosis cases?

Derk Brouwer: School of Public Health, Health Sciences Faculty, University of the Witwatersrand, South Africa
e-mail: derk.brouwer@wits.ac.za

OELs aim to protect workers from developing diseases due to a working lifetime of exposure to hazardous substances. Such limit values can be derived from toxicological animal studies where an outcome or point of departure is used as a starting point for extrapolation to human exposure, or from epidemiological studies. The first type of OEL assumes a ‘standard worker and scenario’, such as a 70 kg male performing light activities for 40 years for 40 hours per week. The second type of OEL uses (aggregated lifetime) exposure-disease outcome relationships to calculate a cut-off point as a limit value concentration. However, there is always a residual risk – partly due to the uncertainties associated with the methods. This means that exposure to the substance at the OEL...
concentration will never protect all workers from adverse health effects. For example, for RCS dust, the US Occupational Safety and Health Agency (OSHA) states that the residual risk for silicosis at an OEL of 0.05 mg/m³ ranges from 0.7% to 4.3%. Similarly, the EU Scientific Committee on Occupational Exposure Limits (SCOEL) assumes a silicosis prevalence of < 5% at that OEL concentration.

In addition to the actual value of the OEL, there are statistical considerations regarding compliance testing. Presently, it is not feasible to measure exposures for every worker each day. In practice, the time-weighted average concentration over eight hours (TWA-8h) of a ‘sample’ of workers is measured periodically. This dataset is used to make inferences about the total population of workers. Consensus exists that a lognormal distribution can best describe the variation in concentrations of pollutants in workplaces. Moreover, the current approach uses the 95th percentile of the estimated distribution of concentrations for the ‘population’ as a test criterion. Taking this into account, it is essential to know how, in actual workplace practice, compliance with the OEL can ensure that the RCS TWA-8h concentrations for all of the workers does not exceed 0.05 mg/m³. For a hypothetical dataset, 21 TWA-8h concentrations range from 0.023 to 0.05 mg/m³ with a geometric mean (GM) of 0.035 mg/m³ and a relatively low geometric standard deviation (GSD) of 1.27. For this dataset (with no data point exceeding 0.05 mg/m³), the point estimate of the 95th percentile of the population from which this sample is drawn is 0.054 mg/m³, and the probability of exceedance of 0.05 mg/m³ is 81.7%.

In conclusion, the risk of developing silicosis will never be reduced to zero, due to the inherent variability of exposure and the uncertainty associated with both the OEL and its compliance testing (95th percentile of a sample). A 5% exceedance of an OEL is accepted, whereas an RCS OEL of 0.05 mg/m³ implicitly accepts a ‘residual’ risk. Therefore, silicosis cannot be eliminated by a statutory OEL of 0.05 mg/m³ (or even a lower value). However, the prevalence can be reduced to a societal ‘accepted risk level’, although this will only work (as long as every worker is not equipped with a real-time monitor every day) if the 95th percentile of the TWA-8h concentration distribution of each measurement campaign (sample) is below this threshold limit value.

REFERENCES

Challenges in reducing the statutory RCS OEL in the SA mining industry

Cas Badenhorst: Occupational Hygiene and Health Research Initiative (OHHRI), North-West University, Potchefstroom Campus, South Africa
e-mail. dr.cas.badenhorst@gmail.com

OELs play a crucial role in assessing workplace exposures and their potential health risks. Ever since Kobert introduced the table of acute exposure limits in 1912, numerous organisations worldwide have contributed to the global effort of establishing OELs. These limits serve as invaluable tools in understanding and managing occupational hazards.

The widespread adoption of OELs has led to a complex landscape of guidelines, influenced by various factors and organisations. The process of developing and setting OELs involves evaluating scientific data on health impacts, which can differ between bodies and jurisdictions. One significant factor contributing to variations in OELs is the consideration of feasibility, with health-based OELs being more

Table 1. Early history of institutional OEL development *

<table>
<thead>
<tr>
<th>Decade first published</th>
<th>Type of OEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910s</td>
<td>US and South African limits (for crystalline silica/quartz only)</td>
</tr>
<tr>
<td>1920s</td>
<td>US Bureau of Mines exposure limits</td>
</tr>
<tr>
<td></td>
<td>International Critical Tables</td>
</tr>
<tr>
<td>1930s</td>
<td>German exposure limits</td>
</tr>
<tr>
<td></td>
<td>USSR Ministry of Labour MACs</td>
</tr>
<tr>
<td>1940s</td>
<td>American Conference of Governmental Industrial Hygienists (ACGIH) maximum allowable concentrations of atmospheric contaminants (preceding threshold limit values)</td>
</tr>
<tr>
<td></td>
<td>American National Standards Institute standards</td>
</tr>
<tr>
<td>1950s</td>
<td>People’s Republic of China’s Provisional Hygienic Standards for the Design of Industrial Premises</td>
</tr>
<tr>
<td>1970s</td>
<td>US Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs)</td>
</tr>
<tr>
<td></td>
<td>National Institute for Occupational Safety and Health (NIOSH) recommended exposure limits (RELs)</td>
</tr>
<tr>
<td></td>
<td>Nordic Expert Group (NEG) for Criteria Documentation of Health Risks from Chemicals</td>
</tr>
<tr>
<td></td>
<td>Deutsche Forschungsgemeinschaft (DFG) Maximale Arbeitsplatz-Konzentration (MACs)</td>
</tr>
<tr>
<td>1980s</td>
<td>American Industrial Hygiene Association (AIHA) workplace environmental exposure limits (WEELs)</td>
</tr>
<tr>
<td>1990s</td>
<td>European Scientific Experts Group (now Scientific Committee on Occupational Exposure Limits [SCOEL]) binding occupational exposure limit values (BOELVs) and indicative occupational exposure limit values (IOELVs)</td>
</tr>
</tbody>
</table>

*Source: Deveau et al. 2015"
precautionary and regulatory-adjusted OELs incorporating non-health factors such as economics and technical feasibility.

These differences in OELs are seen not only between health-based and regulatory-adjusted values but also across jurisdictions with varying socioeconomic contexts and technological capabilities. The economic feasibility of reducing OELs for substances such as silica includes benefits for governments and employers. Governments can experience lower costs in medical treatment and tests, reduced insurance payments, and fewer incident investigations. Employers benefit from reduced costs associated with illnesses, fatalities, insurance payments, replacement workers, and training.

The economic feasibility of reducing OELs also considers costs associated with implementing engineering and administrative controls, conducting more frequent incident investigations, adopting new equipment and technologies, and complying with changes in codes of practice. Additionally, there may be indirect costs related to productivity loss due to process elimination or substitution techniques, as well as the potential for complete work stoppages.

Overall, the economic feasibility of reducing OELs requires a comprehensive assessment of costs and benefits, considering the specific context and capabilities of each jurisdiction.

REFERENCES
1. Kobert R. The smallest amounts of noxious industrial gases which are toxic and the amounts which may perhaps be endured. Comp Pract Toxicol. 1912; 5:45.

Mr Vijay Nundlall (Sibanye-Stillwater) expanded on Prof. Badenhorst’s talk, by discussing current practices to reduce silica dust exposure in the South African mining industry.

Current practices to reduce dust exposure in the South African mining industry

Vijay Nundlall: Sibanye-Stillwater, South Africa

e-mail: vijay.nundlall@sibanyestillwater.com

Vijay Nundlall focused on current practices in the South African gold mining industry to reduce exposure to silica dust. He described the processes that generate silica dust, and how the transportation of the broken rock influences where silica settles and how it is transported via the mine ventilation system. Some of the key interventions discussed were football treatment to keep dust trapped on the footwall, and dust filtration systems to remove silica from the ambient air and during rock tipping (transportation) processes. Watering down and the tools available, including automated spray systems, were also elaborated upon. The use of real-time dust monitors for trouble shooting problem areas, and for re-engineering work processes, was highlighted. Vijay emphasised the importance of awareness and education of employees about the dangers of silica dust, the control measures in place, and what employees can individually do to reduce their exposure to silica dust. He concluded with a description of internal dust management awards – created to influence behaviour – and the trends in silica dust exposure reduction over time with all interventions in place.

Staying in the mining industry, Dr Dipalesa Mokoboto (Department of Mineral Resources and Energy) asked, and responded to the question: “Have the silicosis milestones for SA mining been achieved?”

Summary on achievement of silicosis milestone in the South African mining industry

Dipalesa Mokoboto: Department of Mineral Resources and Energy, South Africa

e-mail: Dipalesa.Mokoboto@dmine.gov.za

The Mine Health and Safety Inspectorate (MHSI), and Mine Health and Safety Council (MHSC) – an entity of the MHSI – were both established in terms of the Mine Health and Safety Act (MHSA) No. 29 of 1996 as amended. Occupational lung diseases (OLDs) such as silicosis and tuberculosis are reported to the MHSI in line with the requirements of the MHSA. The MHSC, on the other hand, is responsible for setting milestones through its tripartite structures, during summits. Milestones on elimination of OLDs were set at a health and safety summit in 2014. The MHSC is responsible for monitoring and reporting on progress made on the milestones.

The milestones covered occupational hygiene and occupational medicine.1

1. By December 2024, 95% of all exposure measurement results will be below the milestone level for RCS of 0.05 mg/m³ (these results are individual readings and not average results).

2. Using present diagnostic techniques, no new cases of silicosis, pneumoconiosis, or coal worker’s pneumoconiosis will occur amongst previously unexposed individuals (‘previously unexposed individuals’ were regarded as those unexposed to mining dust prior to December 2008, i.e. persons entering the industry in 2009).

In terms of monitoring the occupational hygiene milestone to determine if 95% of the RCS measurements were below 0.05 mg/m³, there was an improvement from 82.75% in 2014 to 91.1% in 2020. Thus, the milestone has not yet been reached; however, it is anticipated that 95% of all RCS measurements will be below 0.05 mg/m³ by 2024.
For the occupational medicine milestone, six cases of silicosis were reported to the MHSI, which were confirmed as novice workers. The Medical Bureau for Occupational Diseases (MBOD) certified two of the cases as silicosis. Two additional cases were further investigated by the Minerals Council South Africa and silicosis was excluded in both. One was found to have miliary TB and the other had community acquired pneumonia. A holistic review of the remaining two novice cases needs to be conducted to verify the diagnosis of silicosis. The validity of the diagnosis is influenced by the experience of the reader of the CXR, and the results of other examinations. Although the silicosis milestones for the South African mining industry have not yet been met, great achievements have been made.

REFERENCE

THEME 4: DETECTION AND MONITORING OF SILICA-RELATED DISEASES

Chaired by Dr Thuthula Balfour, Minerals Council South Africa

Three presentations were delivered under this theme. Dr Zodwa Ndlovu discussed the challenges and opportunities of the national silicosis surveillance programme. Prof. Emeritus David Rees from the Wits School of Public Health and Prof. Anna-Carin Olin from the University of Gothenburg spoke about the use of biomarkers in the diagnosis of lung fibrosis and silicosis.

National surveillance of silica-exposed workers – challenges and opportunities

Ntombizodwa Ndlovu: School of Public Health, Health Sciences Faculty, University of the Witwatersrand, South Africa

The concept of surveillance is well established. It is a systematic and ongoing process – not a once-off event. Occupational surveillance systems collect data on exposure measurements, disease, and demographic and occupational characteristics. Nowadays, these data are usually available in computerised, administrative databases. The data are analysed, interpreted, and disseminated to stakeholders for the prevention and control of adverse exposures and occupational diseases. Occupational disease surveillance is useful for the detection of exposures and disease, the monitoring of trends, the identification of workers who are at risk of developing disease, the provision of alerts or warnings of high risk, the provision of information to evaluate or monitor the effects on interventions, and for stimulating research.

The use of routine, administrative, compensation data for surveillance was illustrated using the example of the National Institute for Occupational Health’s (NIOH’s) Pathology Automation System database (PATHAUT). The database contains diagnoses of OLDs, including silicosis and TB, in deceased South African miners. Although the data are collected for autopsy compensation, they are used for OLD surveillance. The PATHAUT database is the only source of long-term data for OLD surveillance in South African mine workers. The surveillance information is contained in annual reports dating back to 1975, which are available on the NIOH website (https://www.nioh.ac.za/pathology-division-surveillance-reports/). The PATHAUT data have also been used extensively for research. Studies have described the magnitude and factors associated with silicosis trends1,2 and alerted the industry to the risk of silicosis in platinum miners and female gold miners.3,4

There are other institutions that collect silicosis disease and silica exposure data that could be used to establish a national silicosis surveillance system for both the mining and non-mining industries. This will require collaboration among the relevant stakeholders. However, experience has shown that sustained commitment determines the success or failure of a surveillance system. Therefore, long-term commitment to provide adequate human and financial resources is key to the development of a sustainable national surveillance system.

REFERENCES

Biomarkers for the detection of pathophysiological responses to silica

David Rees: School of Public Health, Health Sciences Faculty, University of the Witwatersrand, South Africa

Medical surveillance of workers for silicosis – fibrosis of the lung due to RCS – is typically done using CXRs. This method is imperfect because subradiological silicosis (disease unapparent on the X-ray) is common and, once apparent, shows incurable and established disease. Consequently, markers of pathophysiological responses to silica using methods other than CXRs have been of interest for decades.1 These markers are broadly termed biomarkers or screening tests; meaning indicators of excessive exposure or the body’s negative reaction to the exposure, or tests that provide a presumptive diagnosis of disease.
Can we detect early adverse effects of inhaled respirable silica?

Anna-Carin Olin: Dept of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden

e-mail: anna-carin.olin@amm.gu.se

Silica dust exposure is deposited in the very distal part of the small airways (i.e. airways < 2 mm in diameter). Here, silica induces a low-grade inflammatory response as the normal defence system cannot handle the long quartz structures. Long-standing inflammatory changes may slowly develop into silicosis in susceptible individuals, or into cancer.

The small airways have long been known as ‘the silent zone of the lung’. This is based on the fact that early pathological changes are asymptomatic and, moreover, are not detected by routine clinical measures such as spirometry or CXRs. This explains why silicosis is non-invasive, it is suitable for screening for the detection of early disease.

A test that excluded silicosis (high negative predictive value) among exposed individuals would enable selection of only those with a risk of the disease to undergo chest imaging. In resource-scarce settings (informal mining, for instance) this targeting would be beneficial.

5. Identifying susceptible individuals

Only a proportion RCS-exposed people develop silicosis. Identifying those susceptible might stimulate interventions to prevent disease development.

All biomarkers and screening tests investigated so far have flaws and there are reservations about their use. Nevertheless, their potential benefits are substantial and the search for reliable tests should continue.

REFERENCES

KEY POINTS FROM THE WORKSHOP

1. Silicosis is a problem in the mining industry in South Africa and is diagnosed in workers from other industries.

2. Although good progress has been made in reducing silica dust exposures in the gold mines, silica dust-related diseases persist.

3. Silica dust levels have been reduced in the South African gold mining industry, with the help of dust suppression and other controls, but not completely.

4. The silicosis milestones, set in 2014, have not yet been met.

5. There is need for comprehensive silicosis surveillance to monitor the trends and distribution of new cases in South Africa – in both workers and former workers – to assess progress towards silicosis elimination targets.

6. The target 0.05 mg/m³ silica dust concentration is unlikely to provide complete protection against the development of silicosis, which means that the milestone of zero cases of silicosis will not be met.

7. Real-time monitoring of silica dust exposure is needed.

8. The setting of OELs is complicated and lowering the current OEL to 0.05 mg/m³ will introduce complexities that need to be considered.

9. In Sweden, current silica dust exposure levels are unknown due to changes in legislation, which inhibit the measurement of silica concentrations in occupational settings; silica dust rates are probably underestimated.

10. South Africa is ‘ahead of the game’ by performing autopsies on deceased current and ex-mine workers; Sweden has no such programme.

11. New biomarkers for the early detection of pathological effects and disease need to be investigated.
Unanswered questions

1. Is there a need for medical surveillance in the stone and sand industries?
2. What is the relevance of tuberculin skin testing in silica-exposed individuals? Is tuberculosis preventive treatment effective for silicosis in southern Africa?
3. What RCS OEL is protective against increased tuberculosis risk?
4. Should we spend resources on lung cancer surveillance and research in silica-exposed workers?
5. How can we address silica dust exposure and silicosis in artisanal and illegal mine workers?

Quotes from the workshop

1. “We are all swimming in the same pool. Can we learn to be life savers and prevent exposed workers from developing silicosis?” – Jabulile Mhlophe, Department of Employment and Labour
2. “240 cases of silicosis are 240 too many.” – Thuthula Balfour, Minerals Council South Africa
3. “We have known about silicosis for more than 150 years… let us not take another 150 years to eliminate it.” – Gill Nelson, Wits School of Public Health
4. “Silicosis is not the only disease caused by silica dust exposure, and the lungs are not the only organs affected.” – Gill Nelson, Wits School of Public Health

Acknowledgements

We thank Rand Mutual Assurance (RMA) for their generous financial support of the workshop; the Wits School of Public Health for hosting the workshop; Patrick Mamathubi and Arthur Yoyo for technical support; WHC CPD office for arranging CPD points for the attendees; Wits School of Public Health staff and students: Mphidiseng Zwane, Oscah Molife, Francis Abban, and Hanifa Mahlangu; Wits Development and Fundraising, and Advancement staff: Michelle Gallant, Obidie Maunze, Bongo Maqungo, Charné Haak, Rechelle Tsunke, and Faye Khan.

Authors can be contacted directly for copies of their presentations.
Integrated environmental, corporate, and business risk management approaches in regional and national developmental projects

Norman Khoza: Senior OHS specialist: African Union Development Agency (AUDA-NEPAD); SAIOH Regional Coordinator, 2023
e-mail: normank@nepad.org
Chimwemwe Chamdimba: Principal policy specialist: African Union Development Agency (AUDA-NEPAD)
e-mail: chimwemwec@nepad.org

BACKGROUND
The Southern African Tuberculosis and Health Systems Support (SATBHSS) project has resulted in some exclusive and important achievements, and lessons. The project improved several corporate, environmental, and occupational procedures to protect workers, communities, the environment, and businesses. Southern African Development Community (SADC) member states have realised direct and indirect benefits in the past seven years. Some achievements and spillover benefits include reviewing and developing occupational health and safety laws, occupational health standard, environmental laws, and public health laws, including their regulations, standards, and procedures. This was in parallel with intensive training of practitioners such as occupational hygiene professionals and inspectors, and occupational health doctors, radiologists, and nurses. Recognition of complementary programmatic approaches, when undertaken holistically, make the project members realise economies of scale. Ideally, this should include, amongst others, the recognition and implementation of occupational and environmental health and safety (OEHS) systems; environmental and social management systems (ESMSs); employee wellness programmes (EWP); and infection prevention and control (IPC). These are all necessary programmes; however, running them in parallel but disjointedly can waste resources. Working together is beneficial for the projects in terms of the incorporation of multidisciplinary expertise.

I recently lost my brother (Mr Elvis Khoza) who worked in the South African coal mines for more than three decades. During his years of service, inductions and training on health and safety in the mines were offered. One of the important things he did was to sign a consent form, whereby he agreed that an autopsy could be performed on his body. He passed away on the evening of Friday, 16 June 2023. On the following Monday, we approached the mine to perform a post-mortem, but were informed that the post-mortem examination could not be done on the Wednesday of the same week because “the request was submitted late”. Our reaction was that, if Monday was considered late, then the process is self-defeating. In South Africa, especially Mpumalanga, where my brother came from, burial usually occurs in the same week in which the person died, unless the event occurred late in the week. This is to reduce the cost of the funeral and the family trauma, amongst other things, and fast-track the healing process. The inability to perform the autopsy on my brother is a symptom of an unharmonised system that concerns many stakeholders, including the community.

There are many missed opportunities for families, the community, and the country to collect data that can assist in changing workplace policies – not only in South Africa, but the entire continent and beyond.

Fortunately, with the assistance of Dr Spo Kgalamono (Executive Director, National Institute for Occupational Health (NIOH)), and the Pathology Division (NIOH), the post-mortem was performed. From this experience, my suggestion is to develop an electronic notification system that requires mines to report deaths of miners to the NIOH and other relevant stakeholders (trade unions, Medical Bureau for Occupational Diseases (MBOD), and next of kin). In addition, the mines should follow or develop appropriate standard operating procedures for organ removal that apply irrespective of the day of the week.

CHALLENGES AND OPPORTUNITIES
Communication
Employees, communities, and other stakeholders such as contractors and management, lack awareness about complaints and grievances procedures. A collaborative approach requires a comprehensive understanding and communication with key stakeholders. There is a need to promote a single grievance procedure for infection and prevention control (IPC), occupational health and safety (OHS), waste management, land use, air and water pollution, etc. A diverse target group’s cultural and language barriers may hinder accessibility to grievance reporting. It may be necessary to provide translation services or to modify grievance mechanisms to accommodate cultural contexts.

Limited resources
Often, the project implementers invest resources in the challenges that the project is developed to solve. Establishing and implementing comprehensive health and safety, and environmental grievance mechanisms require investments in resources, time, technology, and training, some or all of which are often overlooked. There is a need to prioritise and accommodate grievance procedures for sustainable and inclusive growth.

Trust and transparency
Any health and safety, and environmental grievance mechanisms and/or complaints management and procedures must be trusted and transparent, and must function within reasonable turn-around times. Stakeholders must be assured that their safety concerns will be taken seriously and addressed promptly. If the organisation causing the problem is also handling the grievance mechanism, there might be some trust issues, in which case the process should be handled by an independent third party.

The complexity of investigation
Grievance or complaints procedures are complex and challenging to navigate, especially in a large project that is implemented in multiple geographical areas or countries. This complexity can discourage organisations from investing in internal resources to adequately resolve lodged complaints or grievances. Issues related to indigenous and vulnerable populations, and environmental noise or chemical exposures, require comprehensive investigation skills and technology if they are to be identified and addressed.
Legislative and enforcement setting
The availability (or absence) of regulatory and enforcement capacity often discourages stakeholders from reporting grievances, particularly if no action is taken after a complaint has been lodged. Workers and communities might not report complaints if they know that there will be no consequences. In addition, inspectors need to have legal backing to enforce sanctions due to non-compliance. Fragmentation of processes is also problematic; issues related to OHS are often taken more seriously than those regarding the environment or indigenous people.

Harmonisation of business and corporate/workplace risk assessment ratings
The operational and business risk assessment rankings are typically inconsistent. For example, operational and business risk experts may rate fire dangers similarly. However, the risk to employees exposed to noise or dust, with a long latency period before disease manifests, will be rated low by business risk experts because workers’ exposure to noise and dust will not stop production, or result in loss of money for the company. Workers, families, and communities bear the cost of worker exposure to noise and dust, through sicknesses and deaths that leave widows and orphans without breadwinners or reliable source of income.

Workplace technological advancements
Mines and other infrastructure development projects have become increasingly mechanised due to technology. This has increased complexity and introduced new and re-emerging threats, such as nanotechnology and exposure to nanomaterials, and pandemics. More advanced technologies, occupational hygiene, epidemiology, and toxicology knowledge and skills are needed to address these issues. Regulatory agencies, organisations, and stakeholders must adopt real-time environmental technologies to monitor and control occupational and environmental hazards and mitigate complaints.

Project management has become increasingly difficult due to cultural, human rights, and gender challenges. Developing and promoting harmonised safety, health, and environmental policies and guidelines across all disciplines is necessary to address these complexities.

CONCLUSION
The African Union Agenda 2063\(^1\) shows that development is best realised when the entire ecosystem benefits. Aspirations 1, 2, and 3 of the Agenda advocate for a prosperous Africa based on inclusive growth and sustainable development; an integrated continent, politically united and based on the ideals of Pan-Africanism and the vision of Africa’s Renaissance; and an Africa that has good governance, democracy, respect for human rights, justice, and the rule of law.\(^1\)

The SADC heads of state acknowledge that mine workers contribute significantly to the region’s wealth – at the cost of their lives, families, and communities.\(^2\) Integrated workplace safety, health, and the environment can help with sustainable investment and development, which can help to achieve Sustainable Development Goal (SDG) 3 of the United Nation’s 2030 Agenda for Sustainable Development,\(^3\) i.e. to ensure healthy lives and promote wellbeing for all at all ages. SDG 8 is to “Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all”; Target 8.8 is to “Protect labour rights and promote safe and secure working environments for all workers, including migrant workers, in particular women migrants, and those in precarious employment”.\(^4\)

Business and operational risk assessments should look beyond economic cost. There is an intangible cost of the endless human suffering triggered by occupational accidents and work-related diseases, which are not fully recognised in many business risk assessment figures. This is unfortunate because many of them are preventable. Promoting an integrated workplace health, safety, and environment approach is key during the project design and implementation, and sustainability after the project has closed. Promotion of the autopsy service is important for compensation of occupational lung diseases. The annual pathology reports\(^5\) provide comprehensive information about diseases diagnosed in deceased miners.

ACKNOWLEDGEMENTS
The World Bank funds the SATBHSS project: P155658 and P173228. For more information, visit www.satbhss.org and www.nepad.org. AUDA-NEPAD acknowledges the World Bank; project countries (Lesotho, Malawi, Mozambique, and Zambia); and partners.

REFERENCES
Workplace rehabilitation makes sense for both employee and employer

Dr Miranda Moloto: Head of Rehabilitation, Rand Mutual Assurance
e-mail: Mmoloto@randmutual.co.za

Rehabilitation is a multidisciplinary team intervention designed to optimise functioning and reduce disability of an individual with a health condition. While rehabilitation cannot reverse or undo the damage caused by trauma, it does restore the individual to optimal health, functioning, and wellbeing.

Rand Mutual Assurance (RMA) is a social assurer that has been compensating injured mine and metal workers for almost 130 years. The company has also come face to face with the eventual social outcomes of its beneficiaries, which are not encouraging for either the disabled workers or their families, despite adequate compensation.

Some of the psycho-social outcomes following compensation are:

• Isolation of the newly disabled worker is common because our societies tend not to ‘include’ people living with disabilities.
• Anger and depression in the disabled worker can lead to substance abuse (drugs and alcohol).
• Dysfunctional family relationships and high divorce rates are the result of inadequately prepared wives, husbands, or partners.
• Reduced chances of re-entry into the job market result in the deterioration of socio-economic status of the household, with resultant perpetuation of poverty and no chance of educating children of the affected family.
• The ultimate demise of an injured ex-miner is seldom a direct result of the injury; the deterioration of health, poor socio-economics, and neglect are known to be major contributors.

When the total ecosystem of rehabilitation fails to anticipate the psycho-social effects of living with a disability or impairment, families and communities are left with the burden of caregiving with little training, and no capacity to contain the anger or depression of the disabled worker.

Even though rehabilitation makes sense for all individuals concerned, 50% of known disabled workers never receive the rehabilitation they require.¹

IMPLICATIONS OF DISRUPTED REHABILITATION FOR THE EMPLOYER, EMPLOYEE, AND FUNDER

The employer: some employers have been known to terminate injured workers without allowing an opportunity for rehabilitation or accommodation in work. The experience of carrying long-term absenteeism, with no progress or positive outcomes, tends to frustrate both the employer and employee.

The employee: most employees come into big towns or to the mines to seek job opportunities. When they get injured, their rehabilitation is disrupted when they are discharged to go home to their villages. No access to rehabilitation and loss of contact with the employer result, ultimately, in loss of benefits of early intervention mechanisms. Some employees who have access to intensive rehabilitation refuse it, driven by either ignorance of the benefits or mistrust in the compensation system.

The funder: claims administered tend to utilise most resources while the claimant is in hospital only. There is a population that tends to be lost to follow-up once they are discharged, or if they are lucky to reach a rehabilitation professional, they only receive a portion of the rehabilitation benefit. The funder, in most cases, is given no comfort as to whether medical benefits are in line with rehabilitation standards or not.

THE REGULATORY ENVIRONMENT

Albeit fragmented, there is sufficient legal framework in South Africa to support the maturation of the existing rehabilitation ecosystem. Chapter VIIA in the Compensation for Occupational Injuries and Diseases (COID) Amendment Act, covering rehabilitation, re-integration and return to work (RTW), informs an approach to rehabilitation and drives return to work of employees.
The regulation is complemented by many other regulatory frameworks:
- The South African Constitution (recognises specific rights for people living with disabilities)
- The Labour Relations Act
- Employment Equity Act (Code of Good Practice on Employment of Persons with Disabilities)
- National Health Insurance (pending)

RMA PILOT REHABILITATION PROGRAMME

As a social insurer, RMA has committed to rolling out a pilot rehabilitation programme ahead of the promulgation of the COID Amendment Act of 2020. The programme is anchored by the ‘three pillars’ of rehabilitation model, as depicted in Figure 1.

RTW and workplace rehabilitation remain contentious matters for many employers, because the art and expertise of rehabilitation does not reside inside a mine or a factory. Most employers do not have the training or capacity to extend or explore ‘inclusion’ mechanisms for a disabled employee.

RMA has launched its pilot rehabilitation programme to address these capacity limitations, by implementing the three rehabilitation pillars model with mining members. Figure 2 shows how case management will be coordinated in the programme.

Coordinated rehabilitation models are employed and applied in both developed and developing countries. Most of them require an inclusive and creative approach from the stakeholders. It has been found in most cases that pooling of resources matures the rehabilitation ecosystem, with little or no monetary investment.

SUMMARY: KEY FACTORS IN WORKPLACE REHABILITATION AND RE-INTEGRATION

- Rehabilitation is a multidisciplinary team intervention designed to optimise functioning.
- Coordinated rehabilitation case management reduces frustration and eventual perceived ‘neglect’.
- Timely access to appropriate medical treatment and vocational rehabilitation is critical to self-sustainability of the injured, ill, or disabled worker.
- For the employer, it is necessary to shift the focus from deficits and incapacity towards ability.
- The benefits are compelling when focused stakeholders are committed to RTW.
- Worker commitment to wellness is the fulcrum of rehabilitation.
- Pooled resources, that make both vocational rehabilitation and social reintegration possible, tend to yield the best outcomes. Models exist in which intergovernmental collaborations, with NGOs and insurance funders, have created collaborative funding tools and resources focused on vocational reskilling of injured workers. Such collaborations create easy access to services/jobs/tools for reintegration.

CONCLUSION

RMA’s pilot rehabilitation programme aims to inspire discussion and motivate action towards collaborative rehabilitation and reintegration of injured workers. Rehabilitation is not just the right thing to do; it also restores a moral right of the injured worker to dignity.

REFERENCE

No more skirting around the health and safety concerns of women in mining wearing PPE designed for men

The Chief Inspector of Mines has issued an updated guideline outlining considerations that mines should incorporate into Mandatory Codes of Practice to tackle the health and safety concerns that women have faced from using PPE designed for men.

On 28 July 2023, the Chief Inspector of Mines introduced a new Guideline for a Mandatory Code of Practice (COP) for the Selection and Provision of Personal Protective Equipment (PPE) for Women in the South African Mining Industry (2023 Guideline). While the 2023 Guideline retains the core elements of the version first published in 2015 under section 49(6) of the Mine Health and Safety Act (MHSA), the new Guideline seeks to address the very real body issues faced by women in mining (WIM). In previously male-centric work environments, the impact that PPE has on menstrual health as well as women's dignity is a much-skirted topic. The 2023 Guideline recognises the importance of addressing women's unique health and safety concerns around work attire, particularly ill-fitting PPE designed for male proportions, which can impact their comfort, mobility, and wellbeing in the mining industry.

The objective of the Guideline is to provide a framework within which all South African mines must compile and implement a mandatory code of practice (COP) addressing the provision of PPE for WIM. It should take into account the unique health and safety concerns faced by women in various work roles, from underground miners to engineers and managers. The 2023 Guideline expands the scope beyond the provision of PPE and now provides guidelines on the selection of PPE as well.

The 2023 Guideline introduces an important emphasis on the establishment of WIM structures at mine sites. These structures must reflect technical, professional, and managerial demographics, ensuring that women in various roles are included. This will foster a more inclusive approach to addressing gender-related issues related to occupational health and safety and PPE.

A significant addition in the 2023 Guideline is a summary of the SIMRAC Research Project SIM 100904, which identified safety concerns related to PPE use for WIM. The research project revealed that female mine workers have often encountered challenges related to using the bathroom or changing their sanitary products while wearing standard-issue PPE. Ill-fitting PPE, such as overalls designed to male proportions, can be cumbersome to remove, making it difficult for women to address their sanitary needs. The research project found that this resulted in many women avoiding going to the bathroom or drinking water while on site. The health risks associated with dehydration (especially in high-heat environments), ignoring the urge to urinate, and prolonged gaps between changing sanitary products can drastically affect the health, safety, and comfort of WIM.

Building on the findings of the SIMRAC research, the 2023 Guideline emphasises the need for greater consultation with female employees before selecting and procuring PPE to ensure that the selected protective equipment is suitable for WIM, considering their anatomical and physiological attributes. For example, it may be appropriate to give women the option to wear a two-piece overall, depending on the working environment. There is also a possible link between certain types of PPE used by women and an increased vulnerability to skin conditions such as contact dermatitis, chafing, rashes, and infections. The research highlighted the health and safety risks associated with the coping mechanisms that women developed in response to wearing ill-fitting PPE designed and sized for men, such as lesions from wearing thick woolen socks to improve the fit of large safety boots.

The SIMRAC research places significant emphasis on the need for adequate sanitary amenities at mine sites. Historically, mining facilities lacked separate toilet facilities for women. However, the increased presence of women in mining has highlighted the importance of dedicated and private female toilets, not only to attend to women's sanitary needs but also to guard against gender-based harassment and associated safety concerns.

The updated guideline recommends providing additional separate toilets per work section to ensure privacy, protection, and dignity for female mine workers. Such toilets should be equipped with sanitary bins that are regularly emptied to dispose of sanitary products. Proper waste management in these facilities ensures hygiene and reduces health risks for WIM. In addition, facilities should be equipped with toilet paper and hand-washing facilities. Access to clean water is crucial in reducing the risk of infections, particularly for those who are menstruating. Well-lit areas surrounding toilets ensure safety for women users, especially during night shifts or in underground environments.

To improve the provision of appropriate PPE for WIM, the 2023 Guideline advocates an approach towards selecting and providing PPE that considers ergonomics and comfort, taking into account the dimensions and individual attributes of female workers. A woman's body should not be a barrier to her career in mining. Sourcing PPE from manufacturers that accommodate sizes and designs better suited to the female anatomy, is best done in consultation with WIM.

Employers in the mining sector should review their COPs for the provision of PPE for women to update them with the more detailed framework provided in the 2023 Guideline. By addressing the challenges identified during the implementation of the 2015 Guideline, this updated version represents a positive step towards progress and gender equality in the industry, fostering a safer and more inclusive work environment for WIM.

REFERENCES

REPORT ON THE ICOH MID-TERM MEETING: ANGERS, FRANCE, 15–17 MAY 2023

Founded in 1906 in Milan, Italy, as the Permanent Commission on Occupational Health, today the International Commission on Occupational Health (ICOH) is the world’s leading international scientific society in the field of occupational health, with a membership of approximately 2 000 professionals from 105 countries (www.icohweb.org). ICOH’s main objective is to foster the scientific progress, knowledge, and development of occupational health and safety in all its aspects. The flagship of the ICOH activities is the triennial World Congress on Occupational Health, usually attended by approximately 2 000 to 3 000 participants. ICOH has 38 Scientific Committees (SCs) and various Working Groups (WGs) and Task Groups (TGs), most of which hold their own symposia, conferences, and workshops, produce scientific monographs, and review abstracts that are submitted to the international congresses. Mid-term meetings are held in the periods between the ICOH congresses, and these are attended by the ICOH Officers, Board members, and the Chairs or Secretaries of the SCs and WGs, with the aim of discussing the ongoing activities of ICOH, and the progress made in terms of the ICOH work plan for the specific triennium.

The ICOH mid-term meeting for the current triennium (2022–2024) was held in hybrid mode from 15 to 17 May 2023, in Angers, France. For the first time, selected ICOH National Secretaries (NSs) were invited to participate (one from each region), including Prof. Daan Kocks, ICOH NS for South Africa (and representative of the African region) and Chair of the South African Society of Occupational Medicine (SASOM), who participated virtually and presented his NS report on the second day of the meeting. Claudina Nogueira, ICOH Vice President for SCs and ExCo member of SASOM, attended in person. Another South African occupational safety and health (OSH) professional, Dr Karen Michell, now based in the UK, attended in person in her capacity of Chair of the ICOH SC on Accident Prevention. The meeting was held at the Angers Congress Centre and graciously hosted by the University of Angers, with the very kind support of Prof. Alexis Descatha (ICOH Board member) in terms of organisational and logistics arrangements on the ground. The ICOH Officers meeting took place on 14 May 2023, in the same venue.

Angers and Anjou – the Loire Valley’s best kept secrets…

Just 90 minutes from Paris by high-speed train and 90 minutes from the Atlantic Ocean, the region of Anjou is one of France’s hidden gems and a must-visit location in the Loire Valley, famous for its winelands. In Anjou, the wild and impetuous Loire River, classified as a UNESCO World Heritage site, and many other rivers – Maine, Mayenne, Oudon, Sarthe and Thouet – criss-cross the region, offering visitors a myriad of cruising, sailing, boating, and canoeing opportunities. The region is also known as the ‘Valley of the Kings’ with more than 1 200 châteaux (castles) and manors, most of which are still used as homes. Anjou is the third winemaking region in France – the main grape varieties being Cabernet Franc for red wines and Chenin for white wines. With six routes traversing majestic vineyards and quaint villages, and covering around 90 km, the region produces close to 180 million bottles of wine annually, 17% of which are exported – mainly to Germany, Belgium, and America.

The city of Angers is the capital of Anjou and lies along the Maine River, 8 km above the latter’s junction with the Loire River. The city’s massive, moated Château d’Angers, with 17 towers from 40 to 58 metres high, was built in 1230 on the site of earlier castles, and is the largest fortress in the Loire Valley. The Château is home to the late 14th-century Apocalypse series of tapestries known as Tenture d’Apocalypse, the most important medieval tapestry in the world (104 m long) that has survived many centuries. The tapestries were woven by Nicolas Bataille for Louis I, the Duke of Anjou. The Chant du Monde (Song of the World), a contemporary version of the tapestries designed by Jean Lurçat, is displayed in the 12th-century Hôpital Saint Jean (St. John’s Hospital), known today as the Jean Lurçat and Contemporary Wall Hangings Museum (established in 1986).

Despite the damage of past wars, particularly World War II, Angers is still rich in medieval architecture. The 12th- to 13th-century Cathedral of Saint Maurice retains its original stained glass. The 15th-century Barraut House contains the public library, an art museum, and the complete works of the sculptor Pierre Jean David d’Angers, who was born in the city. The prefecture is in the former Saint Aubin Abbey, dating back to the 11th-century, which has Roman arcades. Angers has evolved around the Château, creating such appealing living conditions that today the city is recognised as the leading French city “où il fait bon vivre”, or where it is good to live.

The many parks, gardens, and greenery throughout the city play a special role in creating this pleasant atmosphere. Based in Angers, the Community Plant Variety Office is a European organisation with the main mission of managing the intellectual property rights associated with valid plant varieties throughout the European Union. This is a way of supporting and guaranteeing the profitability of investments in plant research and innovation on a larger scale. Angers is the largest horticultural centre in Europe and the largest producer of hydrangeas in the world, exporting 80% of its production; the hydrangeas from Angers are famous for being robust, hardy, and developing branches with many buds. The region’s Terra Botanica hosts over 300 000 visitors annually and introduces them to 275 000 plants and flowers from all continents – 27 acres of gardens, water features, and greenhouses, and 40 theme park attractions. It is the world’s first ‘edutainment’ park to be themed on plants and gardens.
The historic centre of Angers, known as Cité, is like a journey back in time. Excellent gastronomy in one of the many local eateries is a definite highlight of the Angers experience.

Quernons d’Ardoise, a favourite local sweet, is a small square of nougatine (caramelised hazelnuts and almonds) wrapped in blue chocolate; and Cointreau, the orange-flavoured triple-sec liqueur, is produced exclusively in Angers. Exhibitions and events are held throughout the year all over Angers, which has a very active cultural centre. Woven into this dynamic mix are nearly 40 000 students; the city is a centre of learning, boasting two renowned universities and several specialised institutions.

Angers – the place for humans and plants, turned out to be the perfect venue to host the 2023 ICOH mid-term meeting!

Day one, Monday 15 May 2023
The mid-term meeting started with the joint meeting of the ICOH Officers, Board, and SCs, and was attended by close to 50 participants. The joint meeting opened with the report from the ICOH President, Prof. Seong-Kyu Kang, and was followed by reports on the SCs (Claudina Nogueira, ICOH Vice President), the activities on the NSSs (Dr Martin Hogan, ICOH Vice President), the report by the Secretary General, Dr Diana Gagliardi, and a short presentation by Dr Won-Jun Choi, Editor-in-Chief of the ICOH Newsletter. The meeting participants then broke into groups for discussion and feedback on three topics, viz. i) increasing collaboration among SCs and with NSSs, ii) increasing the visibility of SC work, and iii) optimisation of management for SCs. A general discussion on the way forward for SCs followed, emanating from the ideas that emerged.

Prof. Abdeljalil El Kholti, President of the ICOH2024 Congress in Marrakesh, Morocco, and Prof. Kamal Wifaq, Chair of the National Scientific Committee, shared updates on the organisation of the event, which will be hosted by the Moroccan Occupational Health Association (MOHA), in collaboration with The Occupational Health Department of the Faculty of Medicine and Pharmacy, Hassan II University of Casablanca. The second announcement was disseminated at the end of March 2023, with information on plenary speakers, fees, grants, and awards, the congress venue and accommodation options, and the topics for Free Paper Sessions, to which abstracts could be submitted for consideration as oral or poster presentations, until the extended deadline of 20 August 2023. The scientific programme is being developed with the participation and suggestions of the ICOH SCs and WGs, the National Organising Committee, and other entities.

The day ended with a guided tour of highlights of the city of Angers, followed by a social dinner at the meeting venue.

Day two, Tuesday 16 May 2023
International Scientific Event on ‘Translational Epidemiology in Occupational Health’
The half-day event in hybrid format and co-organised by ICOH and the University of Angers and Hospital, was held at the meeting venue. The international scientific event was partly funded by Pays de la Loire Région and Angers Loire Métropole.

Epidemiology constitutes a crucial aspect of occupational health, involving research and evaluation with the ultimate aim of generating evidence-based recommendations. Translational aspects of epidemiology aim to transfer scientific responses studied by researchers to field practitioners for workers and decision-makers, to be adapted to a wide range of workplaces. The international scientific event gathered high-profile presenters who shared their expertise and experience on a wide range of topics. The first session, titled ‘Translational Epidemiological Centre on Occupational Health, Toxicology and Preparedness’, included presentations related to a specific project on translational epidemiology to illustrate some examples of tools that can be used (e.g. job exposure matrices, systematic reviews, cohort studies, etc.). In the second session, titled ‘Occupational health around the world’, selected ICOH Board members and other professionals shared their knowledge on current issues in occupational health, presenting on different aspects of occupational risk management in various countries, thus illustrating the importance that ICOH gives to improving working conditions for all. The presentation topics of the second session were:

- The spatial-temporal distribution of musculoskeletal disorders: results of the ‘Global Burden of Disease’ in 204 countries and 21 sub-regions from 1990 to 2019
- Biological risks in relation to other occupational risks
- Controlling workplace health hazards in the chemical industry – a case study from India
- Psychosocial risk management and the promotion of health, safety, and wellbeing in the future of work
- Landscape and legal frameworks of basic occupational health services in southern Africa

View of the Angers Cité and Château, with the Maine River in the foreground. Photograph: ICOH Secretariat
In-person and virtual gathering of OSH professionals – around 50 participants attended the 2023 ICOH mid-term meeting in Angers, France, in mid-May 2023, including the ICOH Officers, Board members, selected National Secretaries, representatives of Scientific Committees and Working Groups, and other invited guests. Photograph: ICOH Secretariat

The long arm of the ‘selfie’ – ICOH Board members and the VP for SCs enjoy some leisure time out in the Angers Cité and Château.
L to R: Akizumi Tsutsumi (Japan), Riitta Sauni (Finland), Frida Marina Fischer (Brazil), Claudina Nogueira (South Africa), Alexis Descatha (France – meeting host and ‘king of the bow-tie’), and Shyam Pingle (India). Photograph: Dr Shyam Pingle

First ICOH Board meeting
The first ICOH Board meeting followed the international scientific event in the afternoon. The final contract between the National Organising Committee of the ICOH2027 Congress and ICOH was formally signed before the beginning of the meeting. The ICOH2027 Congress will be hosted by the Indian Association of Occupational Health (IAOH) in Mumbai, India, with the theme Sustainable Occupational Health in the Era of Globalization.

The programme for the afternoon included reports from the task groups on membership and information and communication. The following ICOH WGs also reported on their activities: Future of Decent Work; Demographic Changes and Occupational Health; Implementation of the Global Strategy of Occupational Health for All, with special reference to the global ban of asbestos; Occupational Cancer; Implementation of ICOH Guidelines on Congress Organisation; and Inequalities in Occupational Health.
Day three, Wednesday 17 May 2023
Second ICOH Board meeting

The following reports were presented on the final day, from 09:00 to 13:00: ICOH Finance Committee; ICOH Budget; and TG on Constitution, and Bylaws and Guidelines. There was a session dedicated to election procedures for the next triennium (2024–2027), as well as a discussion around the bidding process for the ICOH2030 Congress, which is open for submissions until the end of October 2023. The remainder of the meeting time was dedicated to discussions on the following topics: relationships between ICOH and the international organisations, the International Labour Organization (ILO) and the World Health Organization (WHO); a proposal for the appointment of ICOH honorary members; and the current ICOH strategy and future developments.

The meeting adjourned with the ICOH President thanking all attendees for their valuable contributions and active participation during the three days. A special vote of thanks and appreciation was extended to the ICOH Secretariat staff for their tireless work in organising the ICOH mid-term meeting, and their support and able assistance to the ICOH Officers, Board members and Chairs of the SCs and WGs.

UPCOMING ICOH EVENTS FOR 2023
Please refer to the Events page of Occupational Health Southern Africa (http://www.ochealth.co.za/index.php?p=events) and the ICOH website (https://www.icohweb.org/site/events.asp) for more information on upcoming ICOH events until the end of 2023.

NEWS FROM THE SASOM NATIONAL OFFICE
SASOM is once again holding its Annual Congress in a virtual format in 2023. Four sessions will be held on the last Fridays of the months of June, July, August, and September, with the overarching theme being Occupational Health Practice in 2023 – Shining a light on the shadows of medicine. SASOM will report on all four sessions of the Annual Congress in the next issue of Occupational Health Southern Africa.

SASOM is represented on the organising committee of the upcoming conference of the ICOH SC on the History of the Prevention of Occupational and Environmental Diseases – 7th International Conference on the History of Occupational and Environmental Health – to be held at the University of KwaZulu-Natal, from 15 to 17 November 2023. SASOM will present a poster on the history of the Society and deliver an oral presentation on the history of occupational health in South Africa. For more information, please access the official congress website: https://icohhistory.ukzn.ac.za

Global Perspective on Occupational Health for Health Workers Workshops
October 24, 2023
New York City

National Programmes for Occupational Health and Safety for Health Workers
Guideline for Preventing Violence and Harassment at Work
National Programmes for Occupational Health and Safety for Health Workers

jhsph.edu/erc/icoh-scohhcw2023
SAIOH news

As part of our service to members, in this newsletter we provide feedback on the latest developments within the Southern African Institute for Occupational Hygiene (SAIOH). SAIOH exists for its members and is reliant on them to continue to serve this noble profession ethically. Therefore, we invite your inputs and feedback on any matters communicated below.

THE ‘INTERNET OF THINGS’ DEVICE CYBER VULNERABILITIES: ADDRESSING THE RISKS AND ENHANCING SECURITY IN OCCUPATIONAL HYGIENE

In the context of industrial hygiene management, the convergence of ‘hygiene’ and ‘the internet of things’ (IoT) presents both challenges and opportunities. Occupational hygiene focuses on identifying, evaluating, and controlling workplace hazards to protect the health and wellbeing of workers. IoT, on the other hand, involves the interconnection of devices and sensors, enabling data collection, analysis, and automation in various industries. Thus, the integration of IoT devices in occupational hygiene has revolutionised workplace safety and health monitoring.

In the realm of occupational hygiene, the integration of interconnected devices offers real-time data, empowering improved risk assessment and proactive safety measures for workers’ protection. Nonetheless, the swift adoption of IoT in occupational hygiene also creates cyber vulnerabilities, posing risks to the confidentiality of sensitive health data and potentially compromising worker safety. Therefore, understanding the IoT device cyber vulnerabilities specific to occupational hygiene, and devising strategies to bolster security, become imperative to ensure the wellbeing of workers and safeguard their data.

In simple terms, the IoT, in the context of occupational hygiene, begins with data-gathering sensors and monitors. The most common and useful of these, for occupational hygiene professionals, are mobile, wearable devices, which enable real-time monitoring of workers, even from remote locations. These devices are on the forefront of ‘on the worker, on the job’ technology that ushers in the ‘sensing era’ – a new era of information technology where the digital and physical worlds converge.

Gas detection is an exemplary application of this technology, where smartphone apps and sensors work together to warn workers about exposures to toxic substances, including otherwise undetectable gases. The potential applications of the IoT in occupational hygiene are vast and diverse, revolutionising safety practices by supplying real-time data for better risk assessment and proactive measures to protect workers’ wellbeing. However, with the advantages of the IoT come inherent risks, particularly in terms of cyber vulnerabilities.

These potential vulnerabilities include:
1. Weak authentication and access controls: IoT devices may have weak authentication mechanisms or default credentials, making them susceptible to unauthorised access by cyber attackers.
2. Lack of firmware and software updates: many IoT devices lack regular firmware and software updates to address known vulnerabilities, leaving them exposed to potential exploits.
3. Insecure communication: inadequate encryption or unsecured communication channels between IoT devices and central systems can expose sensitive health data to interception.
4. Data privacy and confidentiality: the collection of real-time health data raises concerns about data privacy and confidentiality. Improper data handling or storage can lead to unauthorised access or data breaches. As IoT devices collect and send sensitive health data, including exposure levels to hazardous substances and worker health parameters, ensuring the privacy and protection of this information is paramount to keeping the trust of workers and complying with data protection regulations.
5. Insider threats: malicious insiders or employees with access to IoT devices may exploit vulnerabilities or compromise sensitive data intentionally.
6. Lack of cybersecurity awareness: workers and personnel responsible for operating IoT devices may have limited cybersecurity awareness, leading to poor security practices and potential weaknesses.
7. Interconnected networks: IoT devices may be connected to the organisation’s network, creating potential pathways for attackers to gain access to critical systems.
8. Resource constraints: small and medium-sized organisations may lack the necessary resources and abilities to implement robust cybersecurity measures for IoT devices.

Enhancing IoT device security in occupational hygiene:
1. Implementing secure communication protocols, such as encrypted data transmission and strong authentication, ensures that data collected from IoT devices remain confidential and are accessible only by authorised personnel.
2. Device manufacturers and employers should ensure that IoT devices receive regular security updates and patches to address vulnerabilities and remain resilient against emerging cyber threats.
3. Adopting a multi-layered security approach with firewalls, intrusion detection systems, and secure authentication mechanisms strengthens the overall security of the IoT infrastructure.
4. Employing physical security measures, such as access controls, to prevent unauthorised physical access to IoT devices ensures that tampering attempts are minimised or detected promptly.
5. Organisations should conduct thorough audits to assess and find potential vulnerabilities.

In summary, the adoption of IoT devices in occupational hygiene offers significant benefits in enhancing workplace safety and health. However, it is essential to recognise and address the potential cyber vulnerabilities that these devices introduce. By implementing robust security measures, regular updates, and proactive risk management...
strategies, employers can mitigate the risks associated with IoT device cyber vulnerabilities in occupational hygiene. Safeguarding the integrity and confidentiality of data collected by IoT devices ensures that occupational hygiene efforts continue to drive improved worker safety and wellbeing.

REFERENCES

NATIONAL COUNCIL FEEDBACK

Naadiya Mundy: SAIOH President
e-mail: president@saioh.co.za
Deon Jansen van Vuuren: SAIOH General Manager
e-mail: deon.jvvuuren@gmail.com

Strategic plan and objectives
The targets within SAIOH's continuously evolving five-year strategy are consistently being met by our diligent management board. A signed-off strategy plan will be circulated to all our members and launched at the annual general meeting (AGM) in October.

Ethics
SAIOH’s memorandum of incorporation (MoI), drafted by legal advisors NGO Law, is in the final stages of approval. NGO Law can now concentrate on the review of the SAIOH Ethics Policy and Procedure(s), which will empower the Ethics Committee to instil uncompromisable ethical behaviour in the industry.

Note
Another Ethics PDC will be offered during the 2023 SAIOH Annual Conference.

SAIOH branch activities
The Western Cape branch hosted its second in-person meeting on 9 June 2023. Johan Coetzé discussed the use and application of Bayesian statistics in occupational hygiene. The Gauteng branch will hold its third hybrid meeting on 4 August 2023 at the National Institute for Occupational Health (NIOH) offices in Johannesburg. The Botswana branch, now registered in Botswana as the Botswana Institute for Occupational Health (NIOH) offices in Johannesburg, will hold its third hybrid meeting on 4 August 2023 at the National Institute for Occupational Health (NIOH) offices in Johannesburg. The Botswana branch, now registered in Botswana as the Botswana Institute for Occupational Health (NIOH) offices in Johannesburg, will hold its third hybrid meeting on 4 August 2023 at the National Institute for Occupational Health (NIOH) offices in Johannesburg. The Botswana branch, now registered in Botswana as the Botswana Institute for Occupational Health (NIOH) offices in Johannesburg, will hold its third hybrid meeting on 4 August 2023 at the National Institute for Occupational Health (NIOH) offices in Johannesburg. The Botswana branch, now registered in Botswana as the Botswana Institute for Occupational Health (NIOH) offices in Johannesburg, will hold its third hybrid meeting on 4 August 2023 at the National Institute for Occupational Health (NIOH) offices in Johannesburg. The Botswana branch, now registered in Botswana as the Botswana Institute for Occupational Health (NIOH) offices in Johannesburg, will hold its third hybrid meeting on 4 August 2023 at the National Institute for Occupational Health (NIOH) offices in Johannesburg.

International feedback
The Occupational Hygiene Training Association (OHTA) and the International Occupational Hygiene Association (IOHA) continue communicating with their members; relevant links are e-mailed to all SAIOH members and published on the SAIOH website. IOHA has informed us that they will no longer publish their Global Exposure Manager (GEM) newsletter.

Coinciding with the SAIOH 2023 Annual Conference, the IOHA Board of Directors will hold its autumn meeting in Cape Town – hosted by SAIOH on 22 October 2023. SAIOH will also host a formal dinner for the IOHA Board of Directors on 23 October 2023.

Disappointing news
Garth Hunter, the SAIOH representative on the International Occupational Hygiene Association (IOHA) Board and its National Accreditation Recognition Committee (NARC), and a very prominent member of the PCC and PCC Exco, resigned earlier this month. He and his family are emigrating to Ireland in mid-August. This is a huge loss, not only to SAIOH, but also to the occupational hygiene profession in South Africa. We take this opportunity to wish Garth and his family all the best in their new country.

The SAIOH PCC will nominate a new representative(s) on the IOHA Board and the NAR Committee.

SAIOH Technical Committee feedback
Our second technical committee is developing technical procedures and a SAIOH position paper on heat stress management, enabling SAIOH to provide comprehensive and relevant proposals to strengthen the newly launched Physical Agents Regulations (PAR) – the old Environmental Regulations for Workplaces.

Annual SAIOH Scientific Conference
The hybrid SAIOH 2023 Annual Scientific Conference will take place from 23 to 26 October this year, paired with the IOHA meeting. The theme of the conference is Real-time monitoring revolutionising occupational hygiene for safer workplaces and will take place at the Breakwater Lodge on the Victoria and Alfred Waterfront, Cape Town.

FROM THE PROFESSIONAL CERTIFICATION COMMITTEE (PCC)

Lee Doolan: SAIOH PCC Administrator
e-mail: lee@saioh.co.za
Deon Jansen van Vuuren: SAIOH General Manager
e-mail: deon.jvvuuren@gmail.com
Corlia Peens: PCC Chairperson
e-mail: corlia.peens@isasol.com

Certification assessments
A summary of results from the March to June 2023 assessments is provided in Table 1, which reflects the Q1 and Q2 written assessment results and the Q1 oral assessment results.

The second quarter (Q2) PCC written assessments took place on 23 June 2023; 23 virtual oral assessments were conducted from 21 to 31 July 2023 (Q2).

Oral assessment improvements
The PCC technical teams continue to revise the PCC oral assessment format and questions in line with the occupational hygiene self-assessment tool.

Vol. 29, No. 3 2023
Occupational Health Southern Africa www.ochealth.co.za
Table 1. SAIOH PCC certification assessment results (March–June 2023)

<table>
<thead>
<tr>
<th>Certification category</th>
<th>Written assessments (Q1 and Q2)</th>
<th>Oral assessments (Q1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessed</td>
<td>Passed</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>OH assistant</td>
<td>74</td>
<td>69</td>
</tr>
<tr>
<td>OH technologist</td>
<td>37</td>
<td>21</td>
</tr>
<tr>
<td>Occupational hygienist</td>
<td>34</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>145</td>
<td>109</td>
</tr>
</tbody>
</table>

Two PCC technical teams are working in parallel. The first is updating the SAIOH self-assessment tool and revising the PCC oral assessment format, and the second is developing questions and the required answers. Improvements in the assessment format will encompass the growing field of occupational hygiene and ensure that the assessment format and tools are relevant and current.

Occupational Hygiene Skills Forum (OHSF)
The OHSF was instrumental in coordinating the development of a series of asbestos training courses. The most recent, ‘Asbestos assessments in buildings, section 1: Introduction’ is now available for use by OHSF-registered training providers. The assessments are administered by SAIOH for a certain fee per candidate. Please contact Lee Doolan for more info (lee@saioh.co.za).

Go to www.occhealth.co.za ‘Upcoming Events’
to see upcoming local and international OH events
Guideline for the compilation of a mandatory code of practice for the selection and provision of personal protective equipment for women in the South African mining industry

Dipalesa Mokoboto: Medical Inspector, Department of Mineral Resources and Energy; Past MMPA President
e-mail: Dipalesa.Mokoboto@dmre.gov.za

BACKGROUND

The mining industry has been male dominated for years, but there has been an increase in the number of women employed. Women are now occupying jobs underground, which were, in the past, exclusively performed by men. This comes with unforeseen challenges. One is the use of personal protective equipment (PPE), which was designed for men and did not take female anthropometric measurements into consideration. Women in mining (WIM) have unique anatomical and physiological makeups, and special health and safety needs. This has led to an improvement in the provision of more suitable PPE for women.

According to the project report, SIM 100904, there is a possible association between the types of PPE used by women and increased exposure to skin conditions such as contact dermatitis, chaffing, rashes, and bacterial and fungal infections.1 The situation is reported to be further exacerbated by the unique coping mechanisms that WIM have been compelled to use, to adjust or correct ill-fitting PPE, e.g. the use of nylon tights and thick woolen socks. These unorthodox adjustments led to increased risks for skin conditions.

Thus, it became necessary to draft a guideline on the provision of PPE for WIM in the South African mining industry. The first Guideline was promulgated in 2015. The current Guideline follows a five-year implementation period, addressing concerns that were raised after the first promulgation. The reviewed Guideline was promulgated on 28 July 2023.2

PPE selection, provision, and use in the workplace should not be based only on hazard identification and risk assessment processes, but should also incorporate ergonomic and comfort aspects to guarantee PPE efficiency for all workers. This approach will ensure that female anthropometric measurements are taken into consideration and accommodated. The hazards identified will determine the body part that is to be protected and the PPE that is required. The relevant PPE includes, but is not limited to, head, eye and face protection, hand and arm, body (torso), foot, and respiratory protection.

LEGAL STATUS OF THE GUIDELINE AND CODE OF PRACTICE (COP)

According to Section 9(2) of the Mine Health and Safety Act (MHSA), an employer must prepare and implement a COP on any matter affecting the health and safety of employees at mines, other persons who may be directly affected by activities of these mines, or when the Chief Inspector of Mines (CloM) requires it.3 The COP must comply with any relevant guideline issued by the CloM in accordance with Section 9(3) of the MHSA.3 Failure by the employer to do this is a breach of the MHSA. All employers are, thus, required to prepare and implement the mandatory COP of the selection and provision of PPE for women in the South African mining industry, in accordance with the 2023 Guideline.

OBJECTIVES OF THE GUIDELINE

The main objective of the Guideline is to provide guidance to the employer at every mine when compiling a mandatory COP. The COP will assist employers in providing suitable PPE for WIM where required, and to train all employees on issues relating to PPE for WIM.

ASPECTS TO BE ADDRESSED IN THE COP

The COP must cover, as a minimum requirement, the aspects set out below, unless there are no significant risks identified at the mine that affect the aspects mentioned. The COP covers the roles and responsibilities of different persons involved in the processes to ensure that suitable PPE is provided to WIM.

The roles and responsibilities include the following:

1. The employer

The employer must ensure that:
- structures are established and maintained at the mine to address occupational health and safety, and gender issues related to PPE. These structures must be representative of the technical, professional, and managerial demographics. Consideration should be given to women working in different mining environments (underground and surface), and plants;
- enough of the required and appropriate PPE for each activity performed by WIM is available. Suitable PPE provided should be considered in the risk assessments that are conducted;
- there is awareness, education, and health promotion provided to WIM on mining issues and the use of PPE;
- training is provided on the types and the correct use of suitable PPE;
- before procurement, there are engagements with manufacturers, female employees, and suppliers to meet the PPE needs of the employees;
- procedures are established and implemented, and facilities provided to ensure the proper maintenance of PPE;
- suitable facilities are provided for the storage, transportation, and cleaning of PPE;
- a documented monitoring system is established and maintained, regarding the appropriateness and effectiveness of PPE used by WIM; and
- any medical information required for the implementation of the COP remains confidential.

2. Managers and supervisors

Managers and supervisors are responsible for ensuring effective day-to-day use of PPE by the WIM falling under their supervision. This could include the management and operationalisation of the PPE standard operating procedure (SOP) for the different mine sites. They are also responsible for:
- familiarising themselves with the contents of the COP relevant to the WIM falling under their supervision, and ensuring implementation; and
- ensuring that specific risk assessments are carried out for the protection
of WIM, and providing PPE that can mitigate risks faced by WIM. These assessments are conducted to:

- ensure that WIM receive suitable and sufficient information, instruction, and training regarding PPE supplied to them; and
- ensure the proper use, storage, maintenance, cleaning, examination, repair, and replacement of PPE.

3. Women in Mining

Female employees also have the responsibility to comply with the requirements of any safe measures put in place, and must:

- ensure that the PPE provided is used and cared for as required in the MHSA, and in accordance with the training, instruction, and information received;
- return the PPE after use to the storage facilities provided. If this is not possible, they must take reasonable steps to safeguard the condition of the PPE when temporarily stored elsewhere. Employees must avoid taking the PPE home unless otherwise agreed upon by the employer based on the risk assessment;
- regularly examine the PPE and report any defect, damage, or loss to the manager or the supervisor;
- inform managers or supervisors of any medical and/or other condition(s) that may affect the ability to wear or use PPE; and
- report to the manager or supervisor any concerns regarding the equipment, and suggested improvements to SOPs, which may reduce the risks for PPE or enable improvements in the design or application thereof.

The COP should set out measures to ensure that suitable PPE for WIM is selected and provided, and that such PPE is properly maintained. These measures should include:

- Identifying all areas in which PPE for WIM may be required
- Identifying the types of PPE for WIM that would provide suitable protection against the identified hazards, including undergarments
- Ensuring that the correct PPE for WIM is issued to each female employee in terms of:
 - The size and fit, including smaller sizes, considering their ergonomics, anatomical and physiological needs
 - The workplace hazards
 - The purpose of the PPE
 - The nature of the work to be undertaken
 - Adequacy of PPE in terms of quality and quantity
- Ensuring PPE for WIM is regularly maintained to remain fully functional for its intended purpose
- Ensuring PPE for WIM is timeously replaced when no longer fully functional for its intended use
- Ensuring that the use and effectiveness of the PPE is monitored, including fit, comfort, and maximum protection from the identified hazards for WIM
- Ensuring pregnant and breast-feeding women are duly accommodated in line with the risk assessment

Training

The COP must set out measures to ensure that WIM are properly trained in the use of PPE provided to them, which should include:

- Identifying appropriate persons to provide training to WIM on the use of PPE, with the appropriate qualifications and experience
- Giving employees access to the MHSC’s *Illustrative Handbook on PPE for WIM*, and including PPE training in the induction programme for employees
- Conducting training in two phases for all WIM who are required to wear PPE

CONCLUSION

Most mines have started to implement the requirements outlined in the Guideline in terms of PPE, based on the research findings reported in SIM 100904. For example, women no longer prefer to wear one-piece overalls, choosing to wear two-piece PPE clothes, as depicted in Figures 1 and 2.

REFERENCES

Fig 1. The jacket
A ladies’ cut, longer and extending below the waist with slits on the sides. The bust is darted to fit perfectly over the chest area. The zipper is metal for durability. In this case, the mine opted for a pink reflective strip for a special touch. Photograph: courtesy of MMPA

Figure 2. The pants
A high cut to prevent slipping and unwanted exposure when bending. There is a wider cut around the hips to ensure maximum comfort. A double layer material is inserted in the crotch area to prevent fraying. Photograph: courtesy of MMPA